• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 429
  • 151
  • 112
  • 43
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 8
  • 7
  • 7
  • 4
  • Tagged with
  • 980
  • 354
  • 190
  • 146
  • 132
  • 117
  • 114
  • 106
  • 87
  • 85
  • 73
  • 66
  • 66
  • 64
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Zone Plates for Hard X-Ray Free-Electron Lasers

Nilsson, Daniel January 2013 (has links)
Hard x-ray free-electron lasers are novel sources of coherent x-rays with unprecedented brightness and very short pulses. The radiation from these sources enables a wide range of new experiments that were not possible with previous x-ray sources. Many of these experiments require the possibility to focus the intense x-ray beam onto small samples. This Thesis investigates the possibility to use diffractive zone plate optics to focus the radiation from hard x-ray free-electron lasers. The challenge for any optical element at free-electron laser sources is that the intensity in a single short pulses is high enough to potentially damage the optics. This is especially troublesome for zone plates, which are typically made of high Z elements that absorb a large part of the incident radiation. The first part of the Thesis is dedicated to simulations, where the temperature behavior of zone plates exposed to hard x-ray free-electron laser radiation is investigated. It is found that the temperature increase in a single pulse is several hundred Kelvin but still below the melting point of classical zone plate materials, such as gold, tungsten, and iridium. Even though the temperature increases are not high enough to melt a zone plate it is possible that stresses and strains caused by thermal expansion can damage the zone plate. This is first investigated in an experiment where tungsten gratings on diamond substrates are heated to high temperatures by a pulsed visible laser. It is found that the gratings are not damaged by the expected temperature fluctuations at free-electron lasers. Finally, a set of tungsten zone plates are tested at the Linac Coherent Light Source where they are exposed to a large number of pulses at varying fluence levels in a prefocused beam. Damage is only observed at fluence levels above those typically found in an unfocused x-ray free-electron laser beam. At higher fluences an alternative is to use a diamond zone plate, which has significantly less absorption and should be able to survive much higher fluence. Damage in diamond structures is investigated during the same experiment, but due to a remaining tungsten etch mask on top of the diamond the results are difficult to interpret. Additionally, we also demonstrate how the classical Ronchi test can be used to measure aberrations in focusing optics at an x-ray free-electron laser in a single pulse. The main result of this Thesis is that tungsten zone plates on diamond substrates can be used at hard x-ray free-electron laser sources. / <p>QC 20130514</p>
552

Conductive Thermoplastic Composite Blends for Flow Field Plates for Use in Polymer Electrolyte Membrane Fuel Cells (PEMFC)<br><br>

Wang, Yuhua January 2006 (has links)
This project is aimed at developing and demonstrating highly conductive, lightweight, and low-cost thermoplastic blends to be used as flow field bipolar plates for polymer electrolyte membrane (PEM) fuel cells. <br><br> The research is focused on designing, prototyping, and testing carbon-filled thermoplastic composites with high electrical conductivity, as well as suitable mechanical and process properties. <br><br> The impact of different types of fillers on the composite blend properties was evaluated, as well as the synergetic effect of mixtures of fill types within a thermoplastic polymer matrix. A number of blends were produced by varying the filler percentages. Composites with loadings up to 65% by weight of graphite, conductive carbon black, and carbon fibers were investigated. Research results show that three-filler composites exhibit better performance than single or two-filler composites. <br><br> Injection and compression molding of the conductive carbon filled polypropylene blend was used to fabricate the bipolar plates. A Thermal Gravimetric Analysis (TGA) was used to determine the actual filler loading of composites. A Scanning Electron Microscope (SEM) technique was use as an effective way to view the microstructure of composite for properties such as edge effects, porosity, and fiber alignment. Density and mechanical properties of conductive thermoplastic composites were also investigated. During this study, it was found that 1:1:1 SG-4012/VCB/CF composites showed better performance than other blends. The highest conductivity, 1900 S/m in in-plane and 156 S/m in through plane conductivity, is obtained with the 65% composite. Mechanical properties such as tensile modulus, tensile strength, flexural modulus and flexural strength for 65% 1:1:1 SG-4012/VCB/CF composite were found to be 584. 3 MPa, 9. 50 MPa, 6. 82 GPa and 47. 7 MPa, respectively, and these mechanical properties were found to meet minimum mechanical property requirements for bipolar plates. The highest density for bipolar plate developed in this project is 1. 33 g/cm³ and is far less than that of graphite bipolar plate. <br><br> A novel technique for metal insert bipolar plate construction was also developed for this project. With a copper sheet insert, the in-plane conductivity of bipolar plate was found to be significantly improved. The performance of composite and copper sheet insert bipolar plates was investigated in a single cell fuel cell. All the composites bipolar plates showed lower performance than the graphite bipolar plate on current-voltage (I-V) polarization curve testing. Although the copper sheet insert bipolar plates were very conductive in in-plane conductivity, there was little improvement in single cell performance compared with the composite bipolar plates. <br><br> This work also investigated the factors affecting bipolar plate resistance measurement, which is important for fuel cell bipolar plate design and material selection. Bipolar plate surface area (S) and surface area over thickness (S/T) ratio was showed to have significant effects on the significance of interfacial contact resistances. At high S/T ratio, the contact resistance was found to be most significant for thermoplastic blends. Other factors such as thickness, material properties, surface geometry and clamping pressure were also found to affect the bipolar plate resistance measurements significantly.
553

A high sensitivity imaging detector for the study of the formation of (anti)hydrogen

Berggren, Karl January 2013 (has links)
AEGIS (Antimatter Experiment, Gravity, Interferometry and Spectroscopy) isan experiment under development at CERN which will measure earth's gravitationalforce on antimatter. This will be done by creating a horizontal pulsedbeam of low energy antihydrogen, an atom consisting of an antiproton anda positron. The experiment will measure the vertical de ection of the beamthrough which it is possible to calculate the gravitational constant for antimatter.To characterise the production process in the current state of the experimentit is necessary to develop an imaging detector for single excited hydrogenatoms. This thesis covers the design phase of that detector and includes studiesand tests of detector components. Following literature studies, tests and havingdiscarded several potential designs, a baseline design was chosen. The suggesteddetector will contain a set of ionising rings followed by an electron multiplyingmicrochannel plate, a light emitting phosphor screen, a lens system and nallya CCD camera for readout. The detector will be able to detect single hydrogenatoms, measure their time of ight as well as being able to image electronplasmas and measure the time of ight of the initial particles in such a plasma.Tests were made to determine the behaviour of microchannel plates at the lowtemperatures used in the experiment. Especially, the resistance and multiplicationfactor of the microchannel plates have been measured at temperaturesdown to 14 K. / AEGIS
554

Conductive Thermoplastic Composite Blends for Flow Field Plates for Use in Polymer Electrolyte Membrane Fuel Cells (PEMFC)<br><br>

Wang, Yuhua January 2006 (has links)
This project is aimed at developing and demonstrating highly conductive, lightweight, and low-cost thermoplastic blends to be used as flow field bipolar plates for polymer electrolyte membrane (PEM) fuel cells. <br><br> The research is focused on designing, prototyping, and testing carbon-filled thermoplastic composites with high electrical conductivity, as well as suitable mechanical and process properties. <br><br> The impact of different types of fillers on the composite blend properties was evaluated, as well as the synergetic effect of mixtures of fill types within a thermoplastic polymer matrix. A number of blends were produced by varying the filler percentages. Composites with loadings up to 65% by weight of graphite, conductive carbon black, and carbon fibers were investigated. Research results show that three-filler composites exhibit better performance than single or two-filler composites. <br><br> Injection and compression molding of the conductive carbon filled polypropylene blend was used to fabricate the bipolar plates. A Thermal Gravimetric Analysis (TGA) was used to determine the actual filler loading of composites. A Scanning Electron Microscope (SEM) technique was use as an effective way to view the microstructure of composite for properties such as edge effects, porosity, and fiber alignment. Density and mechanical properties of conductive thermoplastic composites were also investigated. During this study, it was found that 1:1:1 SG-4012/VCB/CF composites showed better performance than other blends. The highest conductivity, 1900 S/m in in-plane and 156 S/m in through plane conductivity, is obtained with the 65% composite. Mechanical properties such as tensile modulus, tensile strength, flexural modulus and flexural strength for 65% 1:1:1 SG-4012/VCB/CF composite were found to be 584. 3 MPa, 9. 50 MPa, 6. 82 GPa and 47. 7 MPa, respectively, and these mechanical properties were found to meet minimum mechanical property requirements for bipolar plates. The highest density for bipolar plate developed in this project is 1. 33 g/cm³ and is far less than that of graphite bipolar plate. <br><br> A novel technique for metal insert bipolar plate construction was also developed for this project. With a copper sheet insert, the in-plane conductivity of bipolar plate was found to be significantly improved. The performance of composite and copper sheet insert bipolar plates was investigated in a single cell fuel cell. All the composites bipolar plates showed lower performance than the graphite bipolar plate on current-voltage (I-V) polarization curve testing. Although the copper sheet insert bipolar plates were very conductive in in-plane conductivity, there was little improvement in single cell performance compared with the composite bipolar plates. <br><br> This work also investigated the factors affecting bipolar plate resistance measurement, which is important for fuel cell bipolar plate design and material selection. Bipolar plate surface area (S) and surface area over thickness (S/T) ratio was showed to have significant effects on the significance of interfacial contact resistances. At high S/T ratio, the contact resistance was found to be most significant for thermoplastic blends. Other factors such as thickness, material properties, surface geometry and clamping pressure were also found to affect the bipolar plate resistance measurements significantly.
555

Development of Electrically Conductive Thermoplastic Composites for Bipolar Plate Application in Polymer Electrolyte Membrane Fuel Cell

Yeetsorn, Rungsima 28 September 2010 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have the potential to play a major role as energy generators for transportation and portable applications. One of the current barriers to their commercialization is the cost of the components and manufacturing, specifically the bipolar plates. One approach to preparing PEMFCs for commercialization is to develop new bipolar plate materials, related to mass production of fuel cells. Thermoplastic/carbon filler composites with low filler loading have a major advantage in that they can be produced by a conventional low-cost injection molding technique. In addition, the materials used are inexpensive, easy to shape, and lightweight. An optimal bipolar plate must possess high surface and bulk electronic conductivity, sufficient mechanical integrity, low permeability, and corrosion resistance. However, it is difficult to achieve high electrical conductivity from a low-cost thermoplastic composite with low conductive filler loading. Concerns over electrical conductivity improvement and the injection processability of composites have brought forth the idea of producing a polypropylene/three-carbon-filler composite for bipolar plate application. The thesis addresses the development of synergistic effects of filler combinations, investigating composite conductive materials and using composite bipolar plate testing in PEMFCs. One significant effect of conductive network formation is the synergetic effects of different carbon filler sizes, shapes, and multiple filler ratios on the electrical conductivity of bipolar plate materials. A polypropylene resin combined with low-cost conductive fillers (graphite, conductive carbon black, and carbon fibers with 55 wt% of filler loading) compose the main composite for all investigations in this research. Numerous composite formulations, based on single-, two-, and three-filler systems, have been created to investigate the characteristics and synergistic effects of multiple fillers on composite conductivity. Electrical conductivity measurements corresponding to PEMFC performance and processing characteristics were investigated. Experimental work also involved other ex-situ testing for the physical requirements of commercial bipolar plates. All combinations of fillers were found to have a significant synergistic effect that increased the composite electrical conductivity. Carbon black was found to have the highest influence on the increase of electrical conductivity compared to the other fillers. The use of conjugated conducting polymers such as polypyrrole (PPy) to help the composite blends gain desirable conductivities was also studied. Electrical conductivity was significantly improved conductivity by enriching the conducting paths on the interfaces between fillers and the PP matrix with PPy. The conductive network was found to have a linkage of carbon fibers following the respective size distributions of fibers. The combination of Fortafil and Asbury carbon fiber mixture ameliorated the structure of conductive paths, especially in the through-plane direction. However, using small fibers such as carbon nanofibers did not significantly improve in electrical conductivity. The useful characteristics of an individual filler and filler supportive functions were combined to create a novel formula that significantly improved electrical conductivity. Other properties, such as mechanical and rheological ones, demonstrate the potential to use the composites in bipolar plate applications. This research contributes a direction for further improvement of marketable thermoplastic bipolar plate composite materials.
556

Effect of Bolts Assembly on the Deformation and Pressure Distribution of Flow-Channel Plates in Micro-PEMFC

Chen, Li-chong 03 August 2010 (has links)
In general, a PEMFC was assembled by using a number of locked bolts. But this assembly will cause concentrated loads existed on the upper and lower portions of the end plates, so that the pressure distributed non-uniformly at the internal structures in the PEMFC and thus causing uneven distributed deformations of flow-channel plates. This phenomenon may lead to the leak of reaction gas, and causing not only the decrease of the efficiency of PEMFC, but also the increase of the dangerous. If the fuel cell size getting smaller, the influence may be more severely. The main aim of this study is to simulate the response of a micro-PEMFC numerically by utilizing a 3-D FEM model while the micro-PEMFC was assembled by three pairs of bolts along the upper and lower portions, respectively, of the end plates. The effects of different bolts locking sequences on the deformation and pressure distributions at flow-channel plates and on the porosity of gas diffusion layers in the micro-PEMFC were investigated. The simulated results showed that if one locked the middle bolt either on the upper or lower portion first, then the obtained uniformities of warpage, deformation, von Mises stress and porosity were superior than the corresponding obtained results if one locked either one of the four corner bolts first. Also, among the three pairs of bolts used for assembling the cell, the first locking bolt of the first pair of locking bolts and the first locking bolt of the rest of two pairs of locking bolts were suggested on the reverse portions of the end plates.
557

Studies and Development of Self-humidifying PEM Fuel Cell

Chen, Chun-Yu 05 September 2011 (has links)
¡@¡@In this thesis, we develop a self-humidifying PEMFC. The humidifying effects on the stability and impedance of the fuel cell are studied. A portable and passive PEMFC stack usually exposes in the ambient no matter that it works or not. However, the ambient is far from saturated. The water within MEA will diffuse to the membrane¡¦s surface and evaporate continuously. The membrane will be short in water without water supplying. Because the conductivity of H+ of the membrane is highly dependent on water content, the dehydration of the membrane will reduce the interconnected passageway of H+ and affect the performance of fuel cell directly. And because of the different expansion rate the electrode of MEA is also possible to separate from its membrane when it operates repeatedly. This separation will make the performance of fuel cell an unrecovered decay. ¡@¡@At first, the hydration status of the dry membrane is observed. We measure the addition weight of water into membrane by using cotton thread humidifying, and estimate the water permeation distances. The maximum water supply rate of cotton thread is 4.26mg/min, and the permeation rate of water through membrane where is 2.5cm from water surface is 0.15mg/cm¡Dmin. Then we design the self-humidifying devices of PEMFC stack. The humidifying effects on performance and stability of the fuel cell are studied. ¡@¡@When the active area is 0.7¡Ñ4.5cm2 and the cotton thread is 5mm from the center of electrode the supplying water can arrive at the reaction area under the electrode through the membrane in one minute. The difference of the supplying water between the bottom and top is 7% by using 6cm cotton thread. Therefore water can hydrate the membrane and the difference of the supplying water between bottom and top is not oversize. The higher current load, the voltage efficiency is lower. The increasing heat generation rate results in the water evaporation rate would be greater than the water generation rate. So the drop of voltage under higher current is greater than lower current. By comparing with the difference of high frequency impedance the change of humidifying is smaller between 1hr operating. It indicates that humidifying by cotton thread keeps the membrane hydration.
558

Hp-spectral Methods for Structural Mechanics and Fluid Dynamics Problems

Ranjan, Rakesh 2010 May 1900 (has links)
We consider the usage of higher order spectral element methods for the solution of problems in structures and fluid mechanics areas. In structures applications we study different beam theories, with mixed and displacement based formulations, consider the analysis of plates subject to external loadings, and large deformation analysis of beams with continuum based formulations. Higher order methods alleviate the problems of locking that have plagued finite element method applications to structures, and also provide for spectral accuracy of the solutions. For applications in computational fluid dynamics areas we consider the driven cavity problem with least squares based finite element methods. In the context of higher order methods, efficient techniques need to be devised for the solution of the resulting algebraic systems of equations and we explore the usage of element by element bi-orthogonal conjugate gradient solvers for solving problems effectively along with domain decomposition algorithms for fluid problems. In the context of least squares finite element methods we also explore the usage of Multigrid techniques to obtain faster convergence of the the solutions for the problems of interest. Applications of the traditional Lagrange based finite element methods with the Penalty finite element method are presented for modelling porous media flow problems. Finally, we explore applications to some CFD problems namely, the flow past a cylinder and forward facing step.
559

Numerical Studies of the Effects of the Flow Channel Structures of Heterogeneous Composite Carbon Fiber Bipolar Plates and Traditional Hard Surface Bipolar Plates on the PEMFC Flow Field and Performance

Pan, Shih-yuan 10 September 2007 (has links)
In this study a three-dimensional mathematical model is developed to simulate the flow field and mass transfer in a PEM fuel cell. In the model, the effects of the different flow channel structures in heterogeneous composite carbon fiber bipolar plates and traditional hard surface bipolar plates on the performance are studied. The results show that, the cell performance with the heterogeneous composite carbon fiber bipolar plates have better performance than that with the traditional hard surface bipolar plates, whether in the parallel flow channel structures or the serpentine flow channel structures. The reason is that, the heterogeneous composite carbon fiber ribs are porous material, so it allows the reactants and products transport uniformly even in the rib zone. This greatly improved the mass transfer and the gases distribution in the fuel cell. With the traditional bipolar plates, the reactants can only enter the reaction zone from the side of carbon cloth under ribs, so that the performance in this area under rib is relatively poor. In the simulation of the flow channel structures, we detect that, due to the single inlet serpentine flow channel have stronger convective effects that forced reactants to flow through the whole reaction zones, so it has better performance at high current density than in the singles inlet parallel flow channel. In addition, the results also show that, higher fuel stoichiometric number and operated pressure and properly humidified at anode will all improve the performance of the fuel cell.
560

Effect of Bolts Locking Sequence on the Deformation of Flow-Channel Plates in Micro-PEMFC

Li, Shih-Chun 22 July 2008 (has links)
The design and method of cell assembly plays an important role in the performance of PEM fuel cell. The cell assembly will affect the contact behavior between the bipolar plates, flow-channel plates, gas diffusion layers (GDLs) and membrane electrode assembly (MEA). From the past studies, it was noted that the flow-channel plates in the cell will be deformed while the cell was assembled by locking with bolts. This phenomenon may lead to leakage of fuels, high contact resistance and malfunctioning of the cells. The main aim of this research is to study the variation of the deformation mode of the flow-channel plat in a micro-PEM fuel cell assembly subjected to different bolts locking sequences. The commercial FEM package, ANSYS, was adopted to model the three-dimensional single micro-PEMFC FEM model and the numerical simulation analyses were performed. The effect of the bolts locking sequence on the deformations of flow-channel plate in the micro-PEMFC was presented. A most properly bolts locking sequence was proposed also.

Page generated in 0.0423 seconds