Spelling suggestions: "subject:"pelartvärsnitt"" "subject:"lådtvärsnitt""
1 |
Modellering av tvärsnitt i betongbro med avseende på egenskaper som platta och balkWäster, Malin January 2013 (has links)
Examensarbetet behandlar ett brotvärsnitt som inte entydigt kan betraktas som ett balktvärsnitt eller plattvärsnitt. Med de måttdefinitioner som används vid broprojektering ska en plattkonstruktion ha en bredd som är fem gånger höjden, annars ska konstruktionen ses som en balk där även balkens längd definieras att vara större än tre gånger höjden. Brotvärsnittet som studeras i detta examensarbete kan alltså definieras både som ett plattvärsnitt och som ett balktvärsnitt. Målet med arbetet är att undersöka om det är möjligt att finna en metod att konstruera denna typ av tvärsnitt som befinner sig i gränslandet mellan två definitioner. Skillnaderna mellan en plattas och en balks verkningssätt ligger i att plattan antas bära last i två riktningar medan en balk enbart bär last i en riktning. Examensarbetet är genomfört i sammarbete med WSP Bro- och vattenbyggnad i Örebro, som konstruerade en bro med just detta tvärsnitt. Bro 344 över parkstråk i trafikplats Rinkeby å ramp mot Ärvinge, är 181 m lång bro i 9 spann och finns belägen vid trafikplats Rinkeby som är en del utav Trafikverkets projekt, E18 Hjulsta – Kista. Lasterna som används i analyserna är betongens egentyngd, utbredd last av beläggning och vertikala trafiklaster. I ett första skede i arbetet analyseras modellerna med rörliga trafiklaster. Det framkom dock under arbetets gång att förenklingar vad gäller trafiklasterna måste göras då arbetet skulle bli för omfattande annars. En statisk boggilast placeras ut i ett spann mitt i mellan dess tredjedelspunkt och halva spannlängden. Beräkningar utförs i en mjukvara där modellen både byggs upp av skalelement som en långsträckt platta där snittkrafter kommer ut som enhet per meter och med balkelement som en halvinspänd balk där snittkrafter kommer ut i enhet per balk. Mjukvaran som används är ett tredimensionellt finit element program, SOFISTIK, som likt många andra FE-program erbjuder användarvänliga modelleringsmiljöer, hanterar rörliga laster och har en mängd inbyggda moduler och funktioner. Beräkningarna som sedan utvärderas och jämförs är dels SOFISTIKs olika resultat för skalmodellen och balkmodellen. Där dimensionerande armeringsmängder beräknas för max fältmoment och max stödmoment. Dessa resultat från SOFISTIKs skalmodell respektive balkmodell jämförs också med resultat från de mjukvaror som användes vid dimensioneringen från början, vilket var för skalmodellanalysen Brigade Standard och för balkanalysen Strip Step 3. Armeringsmängderna jämförs slutligen genom att studera tre fall: • Skalmodell SOFISTIK - Brigade Standard • Balkmodell SOFISTIK - Strip Step 3 • SOFISTIK skalmodell – balkmodell Jämförelserna visar att både skalmodellerna från de olika programmen (SOFISTIK – Brigade Standard) och balkmodellerna från de olika programmen (SOFISTIK – Strip Step 3) ger likvärdiga armeringsmängder vilket ger en trygg verifiering av modellerna. Vidare visar jämförelse mellan skal- och balkmodell i SOFISTIK att balkmodellen ger avsevärt högre armeringsmängder, både i fält och över stöd. ar / The aim of this Master thesis is to study a cross section of a bridge that cannot be unambiguously considered to be defined as a beam cross-section or a slab cross-section. With the given definitions used in bridge engineering, a slab construction has to have a width wider than five times the height, otherwise it should be regarded as a beam construction. The length of a beam construction is also defined to be three times longer than the height. The cross section in this thesis can thus be treated as both a slab cross-section and as a beam cross-section. The aim of this work is to investigate whether it is possible to find a method to construct this type of cross-section that falls within both these two definitions. The difference in mode of action between a plate and a beam is that the plate is assumed to carry loads in two directions while a beam only carries load in one direction. The work done in this report has been performed in cooperation with the consulting company WSP Bridge & Hydraulic Design in Örebro who has constructed a bridge with the studied section, Bro 344 över parkstråk i trafikplats Rinkeby å ramp mot Ärvinge. This bridge is 181 m long in 9 spans and are located at the traffic interchange Rinkeby which is part of the Swedish Transport Administration project, E18 Hjulsta - Kista. The loads, which are discussed and analyzed are the deadweight of the concrete, distributed load of road surface and vertical traffic loads. In the first stage of the work the models are being analyzed with moving traffic loads, it appears, however, during the process that simplifications in terms of the moving traffic loads must be made, when the work would be too wide otherwise. A static bogie-load is deployed in one of the spans, in between the third point and half the span length. Calculations are performed using a computer software, in which the bridge is modeled both by shell elements and by beam elements. The shell-model is created as an elongated plate section in which the force comes out as unit per meter. The beam-model is considered as a semi-restrained beam in which the section forces come out in unit for the whole beam. Software used is a three-dimensional finite element program, SOFISTIK. As many other FEprograms SOFISTIK provide a user-friendly modeling workspace, it handles variable and moving loads and has a variety of embedded modules and functions. The calculations which are being evaluated and compared, is at the first hand the different results in between the shell-model and the beam-model from the models made in SOFISTIK. The amounts of designing reinforcement are calculated for the maximum bending moment and for the minimum bending moment. Those results, also compares with results from other software, the software used in the design from the beginning, which for the shell-analyze the software Brigade Standard and for the beam-analyze the software Strip Step 3. The amounts of design reinforcement are finally compared by studying three cases: • The Shell-model from SOFISTIK - Brigade Standard • Beam-model from SOFISTIK - Strip Step 3 • SOFISTIK the shell-model – the beam-model The comparisons show that both the shell-models from the two different programs (SOFISTIK and Brigade Standard) and the beam-models from the different two programs (SOFISTIK - Strip Step 3) give equivalent amounts of reinforcement which provides a secure verification of the models. Furthermore the comparison between the shell-model and the beam-model, in SOFISTIK , shows that the beam-model provides significantly higher amounts of reinforcement in both the field and at the support.
|
Page generated in 0.0279 seconds