1 |
Using Bandwidth Estimation to Optimize Buffer and Rate Selection for Streaming Multimedia over IEEE 802.11 Wireless NetworksLi, Mingzhe 12 December 2006 (has links)
"As streaming techniques and wireless access networks become more widely deployed, a streaming multimedia connection with the "last mile" being a wireless network is becoming increasingly common. However, since current streaming techniques are primarily designed for wired networks, streaming multimedia applications can perform poorly in wireless networks. Recent research has shown that the wireless network conditions, such as the wireless link layer rate adaptation, contending traffic, and interference can significantly degrade the performance of streaming media applications. This performance degradation includes increased multimedia frame losses and lower image quality caused by packet loss, and multiple rebuffering events that stop the media playout. This dissertation presents the model, design, implementation and evaluation of an application layer solution for improving streaming multimedia application performance in IEEE 802.11 wireless networks by using enhanced bandwidth estimation techniques. The solution includes two parts: 1) a new Wireless Bandwidth estimation tool (WBest) designed for fast, non-intrusive, accurate estimation of available bandwidth in IEEE 802.11 networks, which can be used by streaming multimedia applications to improve the performance in wireless networks; 2) a Buffer and Rate Optimization for Streaming (BROS) algorithm using WBest to guide the streaming rate selection and initial buffer optimization. WBest and BROS are implemented and incorporated into an emulated streaming client-server system, Emulated Streaming (EmuS), in Linux and evaluated under a variety of wireless conditions. The evaluations show that with WBest and BROS, the performance of streaming multimedia applications in wireless networks can be significantly improved in terms of multimedia frame loss, rebuffer events and buffer delay."
|
2 |
A Study of Factors Which Influence QoD of HTTP Video Streaming Based on Adobe Flash TechnologySun, Bin, Uppatumwichian, Wipawat January 2013 (has links)
Recently, there has been a significant rise in the Hyper-Text Transfer Protocol (HTTP) video streaming usage worldwide. However, the knowledge of performance of HTTP video streaming is still limited, especially in the aspect of factors which affect video quality. The reason is that HTTP video streaming has different characteristics from other video streaming systems. In this thesis, we show how the delivered quality of a Flash video playback is affected by different factors from diverse layers of the video delivery system, including congestion control algorithm, delay variation, playout buffer length, video bitrate and so on. We introduce Quality of Delivery Degradation (QoDD) then we use it to measure how much the Quality of Delivery (QoD) is degraded in terms of QoDD. The study is processed in a dedicated controlled environment, where we could alter the influential factors and then measure what is happening. After that, we use statistic method to analyze the data and find the relationships between influential factors and quality of video delivery which are expressed by mathematic models. The results show that the status and choices of factors have a significant impact on the QoD. By proper control of the factors, the quality of delivery could be improved. The improvements are approximately 24% by TCP memory size, 63% by congestion control algorithm, 30% by delay variation, 97% by delay when considering delay variation, 5% by loss and 92% by video bitrate.
|
Page generated in 0.0395 seconds