Spelling suggestions: "subject:"subharmonic functions"" "subject:"subharmonics functions""
1 |
Construction of plurisubharmonic functions on complete Kähler manifolds黃永儀, Wong, Wing-yee, Simon. January 2000 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
|
2 |
Pluripolar sets and pluripolar hulls /Edlund, Tomas, January 2005 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2005. / Härtill 4 uppsatser.
|
3 |
Construction of plurisubharmonic functions on complete Kähler manifolds /Wong, Wing-yee, Simon. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 79-82).
|
4 |
Variations and uniform compactifications of fibers on Stein spacesChan, Shu-fai., 陳澍輝. January 2006 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
|
5 |
Variations and uniform compactificatfons of fibers on Stein spacesChan, Shu-fai. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2007. / Title proper from title frame. Also available in printed format.
|
6 |
On the geometry of calibrated manifolds : with applications to electrodynamics / Kalibrerade mångfalders geometri : med tillämpningar inom elektrodynamikLeijon, Rasmus January 2013 (has links)
In this master thesis we study calibrated geometries, a family of Riemannian or Hermitian manifolds with an associated differential form, φ. We show that it isuseful to introduce the concept of proper calibrated manifolds, which are in asense calibrated manifolds where the geometry is derived from the calibration. In particular, the φ-Grassmannian is considered in the case of proper calibratedmanifolds. The impact of proper calibrated manifolds as a model is studied, aswell as the usefulness of pluripotential theory as tools for the model. The specialLagrangian calibration is an example of an important calibration introduced byHarvey and Lawson, which leads to the definition of the special Lagrangian differentialequation. This partial differential equation can be formulated in threeand four dimensions as det(H(u)) = Δu, where H(u) is the Hessian matrix of some potential u. We prove the existence of solutions and some other propertiesof this nonlinear differential equation and present the resulting 6- and 8-dimensional manifolds defined by the graph {x + i<img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cnabla" />u(x)}. We also considerthe physical applications of calibrated geometry, which have so far largely beenrestricted to string theory. However, we consider the manifold (M,g,F), whichis calibrated by the scaled Maxwell 2-form. Some geometrical properties of relativisticand classical electrodynamics are translated into calibrated geometry.
|
7 |
On the Extension and Wedge Product of Positive CurrentsAl Abdulaali, Ahmad Khalid January 2012 (has links)
This dissertation is concerned with extensions and wedge products of positive currents. Our study can be considered as a generalization for classical works done earlier in this field. Paper I deals with the extension of positive currents across different types of sets. For closed complete pluripolar obstacles, we show the existence of such extensions. To do so, further Hausdorff dimension conditions are required. Moreover, we study the case when these obstacles are zero sets of strictly k-convex functions. In Paper II, we discuss the wedge product of positive pluriharmonic (resp. plurisubharmonic) current of bidimension (p,p) with the Monge-Ampère operator of plurisubharmonic function. In the first part of the paper, we define this product when the locus points of the plurisubharmonic function are located in a (2p-2)-dimensional closed set (resp. (2p-4)-dimensional sets), in the sense of Hartogs. The second part treats the case when these locus points are contained in a compact complete pluripolar sets and p≥2 (resp. p≥3). Paper III studies the extendability of negative S-plurisubharmonic current of bidimension (p,p) across a (2p-2)-dimensional closed set. Using only the positivity of S, we show that such extensions exist in the case when these obstacles are complete pluripolar, as well as zero sets of C2-plurisubharmoinc functions. / At the time of doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Accepted. Paper 2: Manuscript. Paper 3: Manuscript.
|
8 |
Boundary values of plurisubharmonic functions and related topicsKemppe, Berit January 2009 (has links)
This thesis consists of three papers concerning problems related to plurisubharmonic functions on bounded hyperconvex domains, in particular boundary values of such functions. The papers summarized in this thesis are:* Paper I Urban Cegrell and Berit Kemppe, Monge-Ampère boundary measures, Ann. Polon. Math. 96 (2009), 175-196.* Paper II Berit Kemppe, An ordering of measures induced by plurisubharmonic functions, manuscript (2009).* Paper III Berit Kemppe, On boundary values of plurisubharmonic functions, manuscript (2009).In the first paper we study a procedure for sweeping out Monge-Ampère measures to the boundary of the domain. The boundary measures thus obtained generalize measures studied by Demailly. A number of properties of the boundary measures are proved, and we describe how boundary values of bounded plurisubharmonic functions can be associated to the boundary measures.In the second paper, we study an ordering of measures induced by plurisubharmonic functions. This ordering arises naturally in connection with problems related to negative plurisubharmonic functions. We study maximality with respect to the ordering and a related notion of minimality for certain plurisubharmonic functions. The ordering is then applied to problems of weak*-convergence of measures, in particular Monge-Ampère measures.In the third paper we continue the work on boundary values in a more general setting than in Paper I. We approximate measures living on the boundary with measures on the interior of the domain, and present conditions on the approximation which makes the procedure suitable for defining boundary values of certain plurisubharmonic functions.
|
9 |
Plurisubharmonic solutions to nonlinear elliptic equationsLi, Qun, 1978- January 2008 (has links)
No description available.
|
10 |
Quelques propriétés symplectiques des variétés Kählériennes / Some symplectic properties of Kähler manifoldsVérine, Alexandre 28 September 2018 (has links)
La géométrie symplectique et la géométrie complexe sont intimement liées, en particulier par les techniques asymptotiquement holomorphes de Donaldson et Auroux d'une part et par les travaux d’Eliashberget et Cieliebak sur la pseudoconvexité d'autre part. Les travaux présentés dans cette thèse sont motivés par ces deux liens. On donne d’abord la caractérisation symplectique suivante des constantes de Seshadri. Dans une variété complexe, la constante de Seshadri d’une classe de Kähler entière en un point est la borne supérieure des capacités de boules standard admettant, pour une certaine forme de Kähler dans cette classe, un plongement holomorphe et iso-Kähler de codimension 0 centré en ce point. Ce critère était connu de Eckl en 2014 ; on en donne une preuve différente. La deuxième partie est motivée par la question suivante de Donaldson : <<Toute sphère lagrangienne d'une variété projective complexe est-elle un cycle évanescent d'une déformation complexe vers une variété à singularité conique ?>> D'une part, on présente toute sous-variété lagrangienne close d’une variété symplectique/kählérienne close dont les périodes relatives sont entières comme lieu des minima d’une exhaustion <<convexe>> définie sur le complémentaire d'une section hyperplane symplectique/complexe. Dans le cadre kählérien, <<convexe>> signifie strictement plurisousharmonique tandis que dans le cadre symplectique, cela signifie de Lyapounov pour un champ de Liouville. D'autre part, on montre que toute sphère lagrangienne d'un domaine de Stein qui est le lieu des minima d’une fonction <<convexe>> est un cycle évanescent d'une déformation complexe sur le disque vers un domaine à singularité conique. / Symplectic geometry and complex geometry are closely related, in particular by Donaldson and Auroux’s asymptotically holomorphic techniques and by Eliashberg and Cieliebak’s work on pseudoconvexity. The work presented in this thesis is motivated by these two connections. We first give the following symplectic characterisation of Seshadri constants. In a complex manifold, the Seshadri constant of an integral Kähler class at a point is the upper bound on the capacities of standard balls admitting, for some Kähler form in this class, a codimension 0 holomorphic and iso-Kähler embedding centered at this point. This criterion was known by Eckl in 2014; we give a different proof of it. The second part is motivated by Donaldon’s following question: ‘Is every Lagrangian sphere of a complex projective manifold a vanishing cycle of a complex deformation to a variety with a conical singularity?’ On the one hand, we present every closed Lagrangian submanifold of a closed symplectic/Kähler manifold whose relative periods are integers as the lowest level set of a ‘convex’ exhaustion defined on the complement of a symplectic/complex hyperplane section. In the Kähler setting ‘complex’ means strictly plurisubharmonic while in the symplectic setting it refers to the existence of a Liouville pseudogradient. On the other hand, we prove that any Lagrangian sphere of a Stein domain which is the lowest level-set of a ‘convex’ function is a vanishing cycle of some complex deformation over the disc to a variety with a conical singularity.
|
Page generated in 0.1601 seconds