1 |
Computational approaches to discovering differentiation genes in the peripheral nervous system of Drosophila melanogasterGallone, Giuseppe January 2013 (has links)
In the common fruit fly, Drosophila melanogaster, neural cell fate specification is triggered by a group of conserved transcriptional regulators known as proneural factors. Proneural factors induce neural fate in uncommitted neuroectodermal progenitor cells, in a process that culminates in sensory neuron differentiation. While the role of proneural factors in early fate specification has been described, less is known about the transition between neural specification and neural differentiation. The aim of this thesis is to use computational methods to improve the understanding of terminal neural differentiation in the Peripheral Nervous System (PNS) of Drosophila. To provide an insight into how proneural factors coordinate the developmental programme leading to neural differentiation, expression profiling covering the first 3 hours of PNS development in Drosophila embryos had been previously carried out by Cachero et al. [2011]. The study revealed a time-course of gene expression changes from specification to differentiation and suggested a cascade model, whereby proneural factors regulate a group of intermediate transcriptional regulators which are in turn responsible for the activation of specific differentiation target genes. In this thesis, I propose to select potentially important differentiation genes from the transcriptional data in Cachero et al. [2011] using a novel approach centred on protein interaction network-driven prioritisation. This is based on the insight that biological hypotheses supported by diverse data sources can represent stronger candidates for follow-up studies. Specifically, I propose the usage of protein interaction network data because of documented transcriptome-interactome correlations, which suggest that differentially expressed genes encode products that tend to belong to functionally related protein interaction clusters. Experimental protein interaction data is, however, remarkably sparse. To increase the informative power of protein-level analyses, I develop a novel approach to augment publicly available protein interaction datasets using functional conservation between orthologous proteins across different genomes, to predict interologs (interacting orthologs). I implement this interolog retrieval methodology in a collection of open-source software modules called Bio:: Homology::InterologWalk, the first generalised framework using web-services for “on-the- fly” interolog projection. Bio::Homology::InterologWalk works with homology data for any of the hundreds of genomes in Ensembl and Ensembgenomes Metazoa, and with experimental protein interaction data curated by EBI Intact. It generates putative protein interactions and optionally collates meta-data into a prioritisation index that can be used to help select interologs with high experimental support. The methodology proposed represents a significant advance over existing interolog data sources, which are restricted to specific biological domains with fixed underlying data sources often only accessible through basic web-interfaces. Using Bio::Homology::InterologWalk, I build interolog models in Drosophila sensory neurons and, guided by the transcriptome data, find evidence implicating a small set of genes in a conserved sensory neuronal specialisation dynamic, the assembly of the ciliary dendrite in mechanosensory neurons. Using network community-finding algorithms I obtain functionally enriched communities, which I analyse using an array of novel computational techniques. The ensuing datasets lead to the elucidation of a cluster of interacting proteins encoded by the target genes of one of the intermediate transcriptional regulators of neurogenesis and ciliogenesis, fd3F. These targets are validated in vivo and result in improved knowledge of the important target genes activated by the transcriptional cascade, suggesting a scenario for the mechanisms orchestrating the ordered assembly of the cilium during differentiation.
|
2 |
Řešení nadbytečnosti zaměstnanců v organizaci / Solving the Redundancy in OrganizationVeselá, Věra January 2008 (has links)
Competitive environment exacts from companies to be flexible; solving the redundancy becomes commonplace for them. This work has for object outplacement programs in two companies. Based on analysis of these programs there are defined principles for formation and realization of outplacement program in general.
|
3 |
Calpain-Calpastatin System in Peripheral Nerve Myelination and DemyelinationDrouet Saltos, Domenica Elizabeth 03 June 2019 (has links)
No description available.
|
4 |
Evaluating the impact of dynamic extracellular matrix mechanics on Schwann cell plasticityMontgomery, Alyssa 31 May 2023 (has links)
No description available.
|
5 |
Respiratory Sinus Arrhythmia (RSA) in Adults with Possible Autism Spectrum Disorder (ASD) SymptomsBowers, Arielle 25 May 2016 (has links)
No description available.
|
6 |
The role of macrophages in Charcot-Marie-Tooth disease type 1AKullek, Anne Edwina 13 November 2024 (has links)
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common subtype of congenital polyneuropathies of the peripheral nervous system and is currently incurable. It is characterised by an early onset in the first decades of life and a combination of motor and sensory symptoms. The disease is caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. This is mainly expressed in Schwann cells, which produce the insulating myelin layer of the peripheral nerves. This overexpression leads to primary dysmyelination, demyelination and subsequent axonal loss. Clinically, CMT1A manifests as muscle weakness and atrophy of the extremities progressing from distal to proximal. In the CMT1A animal model, it has been shown that a reduction in the number of macrophages can have a positive effect on the course of the disease. A more detailed understanding of the role of this cell type, in particular their heterogeneity, as demonstrated for example after acute nerve lesions, is currently still lacking for CMT1A, but might be a promising therapeutic target. Our research group showed in preliminary work that the Schwann cell pathology - contrary to the clinical picture - is more pronounced proximally than distally. Based on this, we have taken into account both a temporal as well as a spatial component in our analysis. In this study, we show that in our genetic mouse model of CMT1A disease, there is a ubiquitous increase in macrophage number in peripheral nerves during postnatal development. In addition,
we found evidence that this increase may be cell-subgroup specific. In contrast, a more
nerve-specific finding was observed at an adult time point. Here, the increase in macrophage density was more pronounced in proximal nerves, such as the primarily motoric ventral root. Moreover, we found an internerval variability in the number of macrophages expressing phagocytosis markers and antigen-presenting MHCII molecules. The results of this study suggest a connection between the proximally pronounced histopathology and an altered interaction of macrophages. They suggest that there are diverse macrophage subpopulations that have adapted to their specific niche according to the environmental conditions in the different peripheral nerves. This hypothesis is supported by the fact that we also found heterogeneity between the nerves of wild-type animals. Within the scope of this project, we have developed the methodological basis to further clarify and confirm the diversity of macrophages in CMT1A. By taking into account the properties of specific macrophage subgroups, this might enable a more precise search for therapeutic targets that act at the site of the pathology itself in the future.:Acronyms 4
Introduction 9
1. The peripheral nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Macrophages in the PNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1. Peripheral nerve macrophages . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Peripheral neuropathies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4. Charcot-Marie-Tooth disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5. Charcot-Marie-Tooth disease type 1A . . . . . . . . . . . . . . . . . . . . . . . . 20
6. Macrophages in CMT1A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Research questions and aim of this project 25
Materials and Methods 27
1. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.1. Mouse lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2. Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3. Primers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4. Buffers and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5. Apparatus, laboratory equipment and consumables . . . . . . . . . . . . 33
1.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1. Mouse procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2. Histological analysis of diseased and non-diseased mouse peripheral nerves 38
2.3. Spatial analysis of diseased and undiseased mouse peripheral nerves . . . 42
2.4. Fluorescence Activated Cell Sorting . . . . . . . . . . . . . . . . . . . . . 45
2.5. Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Results 47
1. Quantification of macrophages in CMT1A along the proximo-distal axis . . . . . 47
1.1. PMP22-tg mice have increased numbers of nuclei . . . . . . . . . . . . . 48
1.2. Peripheral nerves of PMP22-tg mice display a heterogenous macrophage
response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.3. Characterisation of nerve macrophages in WT at different time points . . 55
1.4. There are no differences in the density of macrophages along the proximodistal
axis within one nerve . . . . . . . . . . . . . . . . . . . . . . . . . 57
2. Macrophage characterisation in 3D . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.1. There is a lack of increase in total volume of CX3CR1+ macrophages in
nerves of P18 PMP22-tg mice . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2. There are no significant differences in spatial properties . . . . . . . . . . 61
3. Inflammatory profile of macrophages in CMT1A . . . . . . . . . . . . . . . . . . 63
3.1. There are no changes in the expression of the lysosomal marker CD107b
in 6mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2. DECTIN1 expression is altered in nerve macrophages at 6 months . . . . 66
3.3. The ventral roots of P18 PMP22-tg mice have a higher quantity ofMHCII
objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4. Macrophages in VR have higher MHCII+ content . . . . . . . . . . . . . 69
3.5. The Npero in PMP22-tg mice displays a specific switch in the antigen
presenting cell type via MHCII at P18 . . . . . . . . . . . . . . . . . . . 70
4. Establishing a protocol for nerve macrophage isolation for downstream transcriptomic
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1. Isolating cells from peripheral nerve tissue . . . . . . . . . . . . . . . . . 72
4.2. Isolating macrophages using FACS-analysis . . . . . . . . . . . . . . . . . 73
Discussion 77
1. Macrophage increase in different nerves and at different disease stages is more
diverse than previously known . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2. CX3CR1+ macrophage subpopulation stays quantitatively stable and is spatially
unchanged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3. Inflammation markers display a diverse pattern in nerve macrophages . . . . . . 86
4. Macrophage separation enables subpopulation-specific analyses . . . . . . . . . . 89
5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Abstract 94
Zusammenfassung 95
References 97
A. Appendix i
A.1. List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.2. List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.3. Macros in Fiji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
A.4. Macros in Imaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
A.5. Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
A.6. Copyright of figures taken from publications . . . . . . . . . . . . . . . . . . . . xvii
B. Selbstständigkeitserklärung (Declaration of independence) xx
C. Curriculum Vitae xxi
D. Acknowledgements xxii / Die Charcot-Marie-Tooth-1A (CMT1A) Erkrankung ist die, derzeit unheilbare, häufigste Subform der angeborenen Polyneuropathien des peripheren Nervensystems. Sie zeichnet sich durch einen frühen Beginn bereits in den ersten Lebensdekaden und kombiniert motorisch-sensorische Symptome aus. Ursächlich ist eine Duplikation des peripheren Myelinprotein 22 (PMP22) Gens, welches vornehmlich in Schwannzellen exprimiert wird, die die isolierende Myelinschicht der peripheren Nerven produzieren. Diese Überexpression führt zu primärer Dysmyelinisierung, Demyelinisierung und nachfolgenden axonalen Verlusten. Klinisch äußert sich CMT1A durch eine von distal nach proximal fortschreitende Muskelschwäche und -atrophie der Extremitäten.
Im CMT1A Tiermodell zeigte sich, dass eine Verringerung der Makrophagenanzahl den Krankheitsverlauf positiv beeinflussen kann. Ein genaueres Verständnis der Rolle dieser Zellen, insbesondere deren Heterogenität, wie etwa nach akuten Nervenläsionen nachgewiesen, fehlt derzeit noch für CMT1A, könnte jedoch einen vielversprechenden therapeutischen Ansatzpunkt darstellen. Vorarbeiten unserer Arbeitsgruppe zeigten eine – konträr zum klinischen Bild – proximal stärker ausgeprägte Schwannzellpathologie. Hieran anknüpfend berücksichtigt unsere Analyse neben einer zeitlichen auch eine räumliche Komponente. In der vorliegenden Arbeit zeigen wir in peripheren Nerven des genetischen CMT1A Mausmodells eine ubiquitäre Erhöhung der Makrophagenanzahl in der postnatalen Entwicklung. Zusätzlich fanden wir Hinweise, dass diese Erhöhung Zell-subgruppenspezifisch sein könnte. Zu einem adulten Zeitpunkt zeigte sich indes ein Nerven-spezifischeres Bild. Hier war die erhöhte
Makrophagendichte in proximalen Nerven, etwa der primär motorischen vorderen Nervenwurzel, stärker betont. Überdies fanden wir eine internervale Variabilität der Anzahl an Makrophagen, die Phagozytosemarker und antigenpräsentierende MHCII-Moleküle exprimierten. Unsere Ergebnisse lassen einen Zusammenhang zwischen der proximal betonten Histopathologie und einer veränderten Interaktion von Makrophagen vermuten. Sie legen nahe, dass es diverse Subpopulationen gibt, die sich entsprechend biologischer Nischen an die jeweiligen Gegebenheiten der peripheren Nerven angepasst haben. Diese These wird unter anderem dadurch unterstützt, dass sich auch die Nerven der Wildtyp Tiere heterogen zeigten. Zur weiteren Abklärung und Bestätigung der Diversität von Makrophagen in CMT1A, haben wir im Rahmen dieser
Arbeit die methodischen Grundlagen entwickelt. Dies könnte es in Zukunft ermöglichen, unter Berücksichtigung der Eigenschaften spezifischer Makrophagen-Subgruppen, gezielter nach therapeutischen Ansatzpunkten zu suchen, die am Ort der Pathologie selbst wirken.:Acronyms 4
Introduction 9
1. The peripheral nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Macrophages in the PNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1. Peripheral nerve macrophages . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Peripheral neuropathies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4. Charcot-Marie-Tooth disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5. Charcot-Marie-Tooth disease type 1A . . . . . . . . . . . . . . . . . . . . . . . . 20
6. Macrophages in CMT1A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Research questions and aim of this project 25
Materials and Methods 27
1. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.1. Mouse lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2. Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3. Primers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4. Buffers and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5. Apparatus, laboratory equipment and consumables . . . . . . . . . . . . 33
1.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1. Mouse procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2. Histological analysis of diseased and non-diseased mouse peripheral nerves 38
2.3. Spatial analysis of diseased and undiseased mouse peripheral nerves . . . 42
2.4. Fluorescence Activated Cell Sorting . . . . . . . . . . . . . . . . . . . . . 45
2.5. Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Results 47
1. Quantification of macrophages in CMT1A along the proximo-distal axis . . . . . 47
1.1. PMP22-tg mice have increased numbers of nuclei . . . . . . . . . . . . . 48
1.2. Peripheral nerves of PMP22-tg mice display a heterogenous macrophage
response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.3. Characterisation of nerve macrophages in WT at different time points . . 55
1.4. There are no differences in the density of macrophages along the proximodistal
axis within one nerve . . . . . . . . . . . . . . . . . . . . . . . . . 57
2. Macrophage characterisation in 3D . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.1. There is a lack of increase in total volume of CX3CR1+ macrophages in
nerves of P18 PMP22-tg mice . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2. There are no significant differences in spatial properties . . . . . . . . . . 61
3. Inflammatory profile of macrophages in CMT1A . . . . . . . . . . . . . . . . . . 63
3.1. There are no changes in the expression of the lysosomal marker CD107b
in 6mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2. DECTIN1 expression is altered in nerve macrophages at 6 months . . . . 66
3.3. The ventral roots of P18 PMP22-tg mice have a higher quantity ofMHCII
objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4. Macrophages in VR have higher MHCII+ content . . . . . . . . . . . . . 69
3.5. The Npero in PMP22-tg mice displays a specific switch in the antigen
presenting cell type via MHCII at P18 . . . . . . . . . . . . . . . . . . . 70
4. Establishing a protocol for nerve macrophage isolation for downstream transcriptomic
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1. Isolating cells from peripheral nerve tissue . . . . . . . . . . . . . . . . . 72
4.2. Isolating macrophages using FACS-analysis . . . . . . . . . . . . . . . . . 73
Discussion 77
1. Macrophage increase in different nerves and at different disease stages is more
diverse than previously known . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2. CX3CR1+ macrophage subpopulation stays quantitatively stable and is spatially
unchanged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3. Inflammation markers display a diverse pattern in nerve macrophages . . . . . . 86
4. Macrophage separation enables subpopulation-specific analyses . . . . . . . . . . 89
5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Abstract 94
Zusammenfassung 95
References 97
A. Appendix i
A.1. List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.2. List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.3. Macros in Fiji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
A.4. Macros in Imaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
A.5. Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
A.6. Copyright of figures taken from publications . . . . . . . . . . . . . . . . . . . . xvii
B. Selbstständigkeitserklärung (Declaration of independence) xx
C. Curriculum Vitae xxi
D. Acknowledgements xxii
|
7 |
Opinions of professional nurses on succession planning in a paediatric contextPetersen, Marleen Patricia 03 1900 (has links)
Thesis (MCur)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: There is no formal succession plan for paediatric professional nurses (PNs) in
academic, tertiary hospitals in the Western Cape. A lack of a succession plan could
have major implications for the sustainability of effective and efficient health care
services (Department of Health, DoH, 2010:1). Therefore, a systematic scientific
investigation is required to determine the opinions of PNs regarding the
characteristics or criteria for a succession plan in a paediatric organization.
The aim of this study was to determine the opinions of paediatric PNs regarding
succession or career planning in academic, tertiary hospitals in the Western Cape. A
quantitative approach with an exploratory, descriptive, non-experimental design was
applied by means of a questionnaire survey which consisted of closed and openended
questions.
Reliability and validity were assured by means of a pilot study and consultation with
nursing experts and a statistician. Cronbach’s alpha test was used to test for internal
consistency between the responses to the 3-point Likert scale and dichotomous
questions on the characteristics of an ideal succession plan. The data was collected
by means of a self-administered, structured questionnaire to elicit opinions regarding
the characteristics of an ideal succession plan that includes a career plan.
Ethical approval was obtained from the Health Research Ethics Committee of the
University of Stellenbosch. Permission for access to the hospitals was obtained from
the hospital and nursing managers. Informed written consent was obtained from the
participants. The questionnaires were distributed personally by the researcher at two
hospitals and via the assistant manager in nursing at one hospital.
Data was analysed by the statistician and descriptive statistics were presented by
means of frequency distribution tables and histograms. Furthermore, the existence
of relationships between variables was compared by means of a t-test or when
assumptions of the t-test were not fulfilled an appropriate non-parametric test was
considered.
The results were evidence of the need for the development of a succession plan
based on Benner’s Novice to Expert Model for paediatric PNs in academic, tertiary hospitals in the Western Cape. In addition, participants’ opinions on the value of a
succession plan, including a career plan showed multiple benefits that will outweigh
its challenges once developed and implemented.
Recommendations are based on the scientific evidence that show the urgent need
for the development and implementation of a formal five level skill-based clinical
training programme that includes a 360-degree feedback system for paediatric PNs
by means of an integrated, collaborative approach.
The development and implementation of a formal succession plan will strengthen and
enhance the retention of the various levels of competent, proficient and expert
paediatric PNs. In addition, a formal succession plan will attract and motivate the
novice and advance beginners to progress to competent, proficient and expert levels. / AFRIKAANSE OPSOMMING: Daar is geen formele opvolgplan vir pediatriese professionele verpleegpersoneel in
akademiese tersiêre hospitale in die Wes-Kaap nie. ’n Gebrek aan ’n opvolgplan kan
ernstige gevolge vir die volhoubaarheid van effektiewe en doeltreffende
gesondheidssorgdienste inhou (DoH, 2010:1). Dus, is ’n sistematiese wetenskaplike
ondersoek nodig om die opinies van professionele verpleegpersoneel te bepaal, ten
opsigte van die eienskappe of kriteria vir ’n opvolgplan in ’n pediatriese organisasie.
Die doel van hierdie studie was om die opinies van pediatriese professionele
verpleegpersoneel te bepaal ten opsigte van ’n opvolg- of beroepsplan in
akademiese, tersiêre hospitale in die Wes-Kaap. ’n Kwantitatiewe benadering met ’n
ondersoekende, beskrywende, nie-eksperimentele ontwerp is toegepas deur gebruik
te maak van ’n vraelysopname wat bestaan het uit geslote en ope-vrae.
Betroubaarheid en geldigheid is verseker deur gebruik te maak van ’n
loodsondersoek en raadpleging van verpleegkundiges en ’n statistikus. Cronbach se
alpha-toets is gebruik om te toets vir interne konsekwentheid tussen die response tot
die 3-punt Likertskaal en tweeledige vrae oor die kenmerke van ’n ideale opvolgplan.
Die data is gekollekteer deur gebruik te maak van ’n selfgeadministreerde,
gestruktureerde vraelys om opinies te onthul ten opsigte van die kenmerke van ’n
ideale opvolgplan, wat ’n beroepsplan insluit.
Etiese goedkeuring is verkry van die Gesondheidsnavorsing se Etiese Komitee van
die Universiteit van Stellenbosch. Toestemming vir toegang tot die hospitale is
verkry van die hospitaal en verpleegbestuurders. Ingeligte skriftelike toestemming is
van die deelnemers verkry. Die vraelyste is persoonlik versprei deur die navorser by
twee hospitale en via die assistentbestuurder wat by een van die hospitale verpleeg.
Data is geanaliseer deur die statistikus en beskrywende statistiek is aangebied by
wyse van frekwensie verspreidingstabelle en histogramme. Voorts, is die bestaan
van verwantskappe tussen veranderlikes vergelyk, deur gebruik te maak van ’n ttoets
of waar veronderstellings van die t-toets nie bereik is nie, is ’n gepaste nieparametriese
toets oorweeg. Die resultate is bewys van die behoefte vir die ontwikkeling van ’n opvolgplan wat
gebaseer is op Benner se Novice to Expert Model vir pediatriese professionele
verpleegpersoneel in akademiese, tersiêre hospitale in die Wes-Kaap.
Daarbenewens, het deelnemers se opinies die waarde van ’n opvolgplan wat ’n
beroepsplan insluit, die veelvoudige voordele wat dit inhou getoon wat die uitdagings
sal oortref, sodra dit ontwikkel en geïmplementeer word.
Aanbevelings is gebaseer op die wetenskaplike bewys wat dui op die dringende
behoefte vir die ontwikkeling en implementering van ’n formele vyfvlak
vaardigheidsgebaseerde kliniese opleidingsprogram wat ’n 360-grade
terugvoersisteem insluit vir pediatriese professionele verpleegpersoneel deur middel
van ’n geïntegreerde, medewerkende benadering.
Die ontwikkeling en implementering van ’n formele opvolgplan sal die retensie van
die verskeie vlakke van bekwame, vaardige en kundige pediatriese professionele
verpleegpersoneel versterk en bevorder. Boonop sal ’n formele opvolgplan
nuwelinge en gevorderdes trek en motiveer om te ontwikkel tot bekwame, vaardige
en kundige vlakke.
|
8 |
CLOSED-LOOP AFFERENT NERVE ELECTRICAL STIMULATION FOR REHABILITATION OF HAND FUNCTION IN SUBJECTS WITH INCOMPLETE SPINAL CORD INJURYSchildt, Christopher J. 01 January 2016 (has links)
Peripheral nerve stimulation (PNS) is commonly used to promote use-dependent cortical plasticity for rehabilitation of motor function in spinal cord injury. Pairing transcranial magnetic stimulation (TMS) with PNS has been shown to increase motor evoked potentials most when the two stimuli are timed to arrive in the cortex simultaneously. This suggests that a mechanism of timing-dependent plasticity (TDP) may be a more effective method of promoting motor rehabilitation. The following thesis is the result of applying a brain-computer interface to apply PNS in closed-loop simultaneously to movement intention onset as measured by EEG of the sensorimotor cortex to test whether TDP can be induced in incomplete spinal cord injured individuals with upper limb motor impairment. 4 motor incomplete SCI subjects have completed 12 sessions of closed-loop PNS delivered over 4-6 weeks. Benefit was observed for every subject although not consistently across metrics. 3 out of 4 subjects exhibited increased maximum voluntary contraction force (MVCF) between first and last interventions for one or both hands. TMS-measured motor map volume increased for both hemispheres in one subject, and TMS center of gravity shifted in 3 subjects consistent with studies in which motor function improved or was restored. These observations suggest that rehabilitation using similar designs for responsive stimulation could improve motor impairment in SCI.
|
9 |
Transcriptional Regulation in the Peripheral Nervous System and the Role of STAT3 in Axon RegenerationSmith, Robin Patrick 30 September 2008 (has links)
Several factors contribute to the failure of the central nervous system (CNS) to regenerate after injury. These include inhibition of axonal growth by myelin and glial scar associated molecules, as well as the intrinsic inability of adult CNS neurons to grow long axons in environments that are permissive for younger neurons. Neurons in the peripheral nervous system (PNS) display a much higher capacity to regenerate after injury than CNS neurons, as shown by conditioning lesion experiments and by microtransplantation of dorsal root ganglia neurons into CNS white matter tracts. Our central hypothesis is that neurons of the PNS express specific regeneration associated genes that mediate their enhanced growth response after injury. We have employed a combination of subtractive hybridization, microarray comparison and promoter analysis to probe for genes specific to neurons of the dorsal root ganglia (DRG), using cerebellar granule neurons (CGN) as a reference. We have identified over a thousand different genes, many of whose products form interaction networks and signaling pathways. Moreover, we have identified several dozen transcription factors that may play a role in establishing DRG neuron identity and shape their responses after injury. One of these transcription factors is Signal Transducer and Activator of Transcription 3 (STAT3), previously known to be upregulated in the PNS after a conditioning lesion but not known to be specific to the PNS. Using a real time PCR and immunochemical approaches we have shown that STAT3 is constitutively expressed and selectively active in DRG neurons both in culture and in vivo. We show that the overexpression of wild type STAT3 in cerebellar granule neurons leads to the formation of supernumerary neurites, whereas the overexpression of constitutively active STAT3-C leads to a 20% increase in total neurite outgrowth. It is hoped that the genetic delivery of STAT3-C, potentially combined with co-activators of transcription, will improve functional regeneration of CNS axons in vivo.
|
10 |
Neural Stem and Progenitor Cells as a Tool for Tissue RegenerationWallenquist, Ulrika January 2009 (has links)
Neural stem and progenitor cells (NSPC) can differentiate to neurons and glial cells. NSPC are easily propagated in vitro and are therefore an attractive tool for tissue regeneration. Traumatic brain injury (TBI) is a common cause for death and disabilities. A fundamental problem following TBI is tissue loss. Animal studies aiming at cell replacement have encountered difficulties in achieving sufficient graft survival and differentiation. To improve outcome of grafted cells after experimental TBI (controlled cortical impact, CCI) in mice, we compared two transplantation settings. NSPC were transplanted either directly upon CCI to the injured parenchyma, or one week after injury to the contralateral ventricle. Enhanced survival of transplanted cells and differentiation were seen when cells were deposited in the ventricle. To further enhance cell survival, efforts were made to reduce the inflammatory response to TBI by administration of ibuprofen to mice that had been subjected to CCI. Inflammation was reduced, as monitored by a decrease in inflammatory markers. Cell survival as well as differentiation to early neuroblasts seemed to be improved. To device a 3D system for future transplantation studies, NSPC from different ages were cultured in a hydrogel consisting of hyaluronan and collagen. Cells survived and proliferated in this culturing condition and the greatest neuronal differentiating ability was seen in cells from the newborn mouse brain. NSPC were also used in a model of peripheral nervous system injury, and xeno-transplanted to rats where the dorsal root ganglion had been removed. Cells survived and differentiated to neurons and glia, furthermore demonstrating their usefulness as a tool for tissue regeneration.
|
Page generated in 0.0484 seconds