• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 13
  • Tagged with
  • 32
  • 19
  • 11
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modélisation et simulation de l’IRM de diffusion des fibres myocardiques / Modeling and simulation of diffusion magnetic resonance imaging for cardiac fibers

Wang, Lihui 21 January 2013 (has links)
L’imagerie par résonance magnétique de diffusion (l’IRMd) est actuellement la seule technique non-invasive pour étudier l’architecture tridimensionnelle des fibres myocardiques du cœur humain à la fois ex vivo et in vivo. Cependant, il est difficile de savoir comment les caractéristiques de diffusion calculées à partir des images de diffusion reflètent les propriétés des microstructures du myocarde à cause de l’absence de la vérité-terrain sans parler de l’influence de divers facteurs tels que la résolution spatiale, le bruit et les artéfacts. L'objectif principal de cette thèse est donc de développer des simulateurs de l’IRM de diffusion basés sur des modèles réalistes afin de simuler, en intégrant différentes modalités d'imagerie, les images pondérées en diffusion des fibres myocardiques à la fois ex vivo et in vivo, et de proposer un outil générique permettant d’évaluer la qualité de l’imagerie et les algorithmes de traitement d’images. Pour atteindre cet objectif, le présent travail se focalise sur quatre parties principales. La première partie concerne la formulation de la théorie de simulation IRMd pour la génération d’images de diffusion et pour les applications sur les modèles simples de fibres cardiaques chez l’homme, et essaie de comprendre la relation sous-jacente entre les propriétés mesurées de la diffusion et les caractéristiques à la fois physiques et structurelles des fibres cardiaques. La seconde partie porte sur la simulation des images de résonance magnétique de diffusion à différentes échelles en s’appuyant sur des données du cœur humain issues de l'imagerie par lumière polarisée. En comparant les propriétés de diffusion à différentes échelles, la relation entre la variation de la microstructure et les propriétés de diffusion observée à l'échelle macroscopique est étudiée. La troisième partie consacre à l’analyse de l'influence des paramètres d'imagerie sur les propriétés de diffusion en utilisant une théorie de simulation améliorée. La dernière partie a pour objectif de modéliser la structure des fibres cardiaques in vivo et de simuler les images de diffusion correspondantes en combinant la structure des fibres cardiaques et le mouvement cardiaque connu a priori. Les simulateurs proposés nous fournissent un outil générique pour générer des images de diffusion simulées qui peuvent être utilisées pour évaluer les algorithmes de traitement d’images, pour optimiser le choix des paramètres d’IRM pour les fibres cardiaque aussi bien ex vivo que in vivo, et pour étudier la relation entre la structure de fibres microscopique et les propriétés de diffusion macroscopiques. / Diffusion magnetic resonance imaging (dMRI) appears currently as the unique imaging modality to investigate noninvasively both ex vivo and in vivo three-dimensional fiber architectures of the human heart. However, it is difficult to know how well the diffusion characteristics calculated from diffusion images reflect the microstructure properties of the myocardium since there is no ground-truth information available and add to that the influence of various factors such as spatial resolution, noise and artifacts, etc. The main objective of this thesis is then to develop realistic model-based dMRI simulators to simulate diffusion-weighted images for both ex vivo and in vivo cardiac fibers by integrating different imaging modalities, and propose a generic tool for the evaluation of imaging quality and image processing algorithms. To achieve this, the present work focuses on four parts. The first part concerns the formulation of basic dMRI simulation theory for diffusion image generation and subsequent applications on simple cardiac fiber models, and tries to elucidate the underlying relationship between the measured diffusion anisotropic properties and the cardiac fiber characteristics, including both physical and structural ones. The second part addresses the simulation of diffusion magnetic resonance images at multiple scales based on the polarized light imaging data of the human heart. Through both qualitative and quantitative comparison between diffusion properties at different simulation scales, the relationship between the microstructure variation and the diffusion properties observed at macroscopic scales is investigated. The third part deals with studying the influence of imaging parameters on diffusion image properties by means of the improved simulation theory. The last part puts the emphasis on the modeling of in vivo cardiac fiber structures and the simulation of the corresponding diffusion images by combining the cardiac fiber structure and the a priori known heart motion. The proposed simulators provide us a generic tool for generating the simulated diffusion images that can be used for evaluating image processing algorithms, optimizing the choice of MRI parameters in both ex vivo and in vivo cardiac fiber imaging, and investigating the relationship between microscopic fiber structure and macroscopic diffusion properties.
32

In vivo diffusion tensor imaging (DTI) for the human heart under free-breathing conditions / Tenseur de diffusion d'imagerie (DTI) in vivo pour le cœur de l'homme dans des conditions de libre respiration

Wei, Hongjiang 20 November 2013 (has links)
L'orientation des fibres myocardiaque est à la base du comportement électro-mécanique du cœur, et connue pour être altérée dans diverses maladies cardiaques telles que la cardiopathie ischémique et l'hypertrophie ventriculaire. Cette thèse porte principalement sur l'imagerie in vivo du tenseur de diffusion (diffusion tensor imaging—DTI) en vue d’obtenir la structure des fibres myocardiques du cœur humain dans des conditions de respiration libre. L'utilisation de DTI pour l'étude du cœur humain in vivo est un grand défi en raison du mouvement cardiaque. En particulier, l’acquisition DTI avec respiration libre sans recourir au gating respiratoire est très difficile à cause des mouvements à a fois respiratoire et cardiaque. Pour aborder ce problème, nous proposons de nouvelles approches consistant à combiner des acquisitions à retards de déclenchement multiples (trigger delay—TD) et des méthodes de post-traitement. D’abord, nous réalisons des acquisitions avec multiples TD décalés en fin de diastole. Ensuite, nous développons deux méthodes de post-traitement. La première méthode s’attaque au problème d’effets de mouvement physiologique sur DTI cardiaque in vivo en utilisant les techniques de recalage et de PCATMIP (Principal Components Analysis filtering and Temporal Maximum Intensity Projection). La deuxième méthode traite le problème de mouvement par l’utilisation d’un algorithme de fusion d’images basé sur l’ondelette (wavelet-based image fusion-WIF) et d’une technique de débruitage PCA (Principal Components Analysis). Enfin, une comparaison des mesures DTI entre la méthode PCATMIP et la méthode WIF est réalisée ; les champs de tenseurs sont calculés, à partir desquels les propriétés de l’architecture des fibres in vivo sont comparées. Les résultats montrent qu’en utilisant les approches proposées, il est possible d’étudier l’impact du mouvement cardiaque sur les paramètres de tenseur de diffusion, et d’explorer les relations sous-jacentes entre les propriétés de tenseur de diffusion mesurées et le mouvement cardiaque. Nous trouvons aussi que la combinaison des acqusiitions avec des TD multiples décalés and des post-traitements d’images peut compenser les effets de mouvement physiologique, ce qui permet d’obtenir l’architecture 3D du cœur humain dans des conditions de respiration libre. Les résultats suggèrent de nouvelles solutions au problème de perte du signal due au mouvement, qui sont prometteuses pour obtenir les propriétés de l’architecture des fibres myocardiques du cœur humain in vivo, dans des conditions cliniques. / The orientation of cardiac fibers underlies the electro-mechanical behavior of the heart, and it is known to be altered in various cardiac diseases such as ischemic heart disease and ventricular hypertrophy. This thesis mainly focuses on in vivo diffusion tensor imaging (DTI) to obtain the myocardial fiber structure of the human heart under free-breathing conditions. The use of DTI for studying the human heart in vivo is challenging due to cardiac motion. In particular, free-breathing DTI acquisition without resorting to respiratory gating is very difficult due to both respiratory and cardiac motion. To deal with this problem, we propose novel approaches that combine multiple shifted trigger delay (TD) acquisitions and post-processing methods. First, we perform multiple shifted TD acquisitions at end diastole. Then, we focus on two different post-processing methods. The first method addresses physiological motion effects on in vivo cardiac DTI using image co-registration and PCATMIP (Principal Components Analysis filtering and Temporal Maximum Intensity Projection). The second method is a wavelet-based image fusion (WIF) algorithm combined with a PCA noise removing method. Finally, a comparison of DTI measurements between the PCATMIP and WIF methods is also performed; tensor fields are calculated, from which the in vivo fiber architecture properties are compared. The results show that using the proposed approaches, we are able to study the cardiac motion effects on diffusion tensor parameters, and investigate the underlying relationship between the measured diffusion tensor properties and the cardiac motion. We also find that the combination of multiple shifted TD acquisitions and dedicated image post-processing can compensate for physiological motion effects, which allows us to obtain 3D fiber architectures of the human heart under free-breathing conditions. The findings suggest new solutions to signal loss problems associated with bulk motion, which are promising for obtaining in vivo human myocardial fiber architecture properties in clinical conditions.

Page generated in 0.0393 seconds