• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A conservation perspective on the mechanisms that influence plant-pollinator interactions

BIELLA, Paolo January 2018 (has links)
Several aspects of plant-pollinator interactions are presented in the thesis. It contains a review on the open questions of plant-pollinator interactions from single species to complex networks. The following sections document novel results. Firstly, the conservation of complex pollination networks is addressed through the hierarchy of species' importance. In addition, the habitat requirements and interactions of a threatened rare pollinator species are explored. In the following chapters, the results from manipulative approaches applied in the field to plant-pollinator interactions are presented. The effect of pollinator's population decline on pollinators' foraging for pollen is investigated. Moreover, the way plant species loss impact several aspects of pollinator visitation is presented. Lastly, the impact of species removal on plant-pollinator network topology and on species ability of establishing new interactions is investigated.
2

Pollen Transport Networks Reveal Highly Diverse and Temporally Stable Plant-Pollinator Interactions in an Appalachian Floral Community

Barker, Daniel A., Arceo-Gomez, Gerardo 01 October 2021 (has links)
Floral visitation alone has been typically used to characterize plant-pollinator interaction networks even though it ignores differences in the quality of floral visits (e.g. transport of pollen) and thus may overestimate the number and functional importance of pollinating interactions. However, how network structural properties differ between floral visitation and pollen transport networks is not well understood. Furthermore, the strength and frequency of plant-pollinator interactions may vary across fine temporal scales (within a single season) further limiting our predictive understanding of the drivers and consequences of plant-pollinator network structure. Thus, evaluating the structure of pollen transport networks and how they change within a flowering season may help increase our predictive understanding of the ecological consequences of plant-pollinator network structure. Here we compare plant-pollinator network structure using floral visitation and pollen transport data and evaluate within-season variation in pollen transport network structure in a diverse plant-pollinator community. Our results show that pollen transport networks provide a more accurate representation of the diversity of plant-pollinator interactions in a community but that floral visitation and pollen transport networks do not differ in overall network structure. Pollen transport network structure was relatively stable throughout the flowering season despite changes in plant and pollinator species composition. Overall, our study highlights the need to improve our understanding of the drivers of plant-pollinator network structure in order to more fully understand the process that govern the assembly of these interactions in nature.
3

Re-establishment of Wild Bee Communities on Reclaimed Ohio Coal Mines

Lanterman, Jessie L. 11 December 2017 (has links)
No description available.

Page generated in 0.0607 seconds