• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 9
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 74
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Synthesis, Characterization and Structure-Property Relationships of Polymer-Stabilized Nanoparticles Containing Imaging and Therapeutic Agents

Balasubramaniam, Sharavanan 06 February 2014 (has links)
The controllable design of magnetic nanocarriers is essential for advanced in vivo applications such as magnetic resonance image-guided therapeutic delivery and alternating magnetic field-induced remote release of drugs. This work describes the fabrication of polymer-stabilized nanoparticles encapsulating imaging and therapeutic agents and delineates relationships among materials parameters and response. The effect of aggregation of magnetic iron oxide nanoparticles in aqueous suspension was characterized using a well-defined core-corona complex comprised of a superparamagnetic magnetite nanoparticle stabilized by terminally-anchored poly(N-isopropylacrylamide) (PNIPAM) corona. The modified Vagberg density distribution model was employed to verify that the complexes were individually dispersed prior to aggregation and was found to accurately predict the intensity-weighted hydrodynamic diameter in water. Aggregation of the complexes was systematically induced by heating the suspension above the lower critical solution temperature (LCST) of the polymer, and substantial increase in the NMR transverse relaxation rates was noted. Controlled clusters of primary iron oxide nanoparticles stabilized by the biodegradable block copolymer, poly(ethylene oxide-b-D,L-lactide) were fabricated by a scalable, rapid precipitation technique using a multi-inlet vortex mixer. Quantitative control over iron oxide loading, up to 40 wt%, was achieved. Correlations between particle parameters and transverse relaxivities were studied within the framework of the analytical models of transverse relaxivity. The experimental relaxivities typically agreed to within 15% with the values predicted using the analytical models and cluster size distributions derived from cryo-transmission electron microscopy. Hydrophilic-core particles assembled using the poly(ethylene oxide-b-acrylate) copolymer and at similar primary nanoparticle sizes and loadings had considerably higher transverse (r2) and longitudinal (r1) relaxivities, with r2s approaching the theoretical limit for ~ 8 nm magnetite. Block copolymer nanoparticles comprised of poly(D,L-lactide) and poly(butylene oxide) cores were utilized to encapsulate the poorly water-soluble antiretroviral drug, ritonavir, at therapeutically-useful loadings. Controlled size distributions were achieved by incorporation of homopolymer additives, poly(L-lactide) or poly(butylene oxide) during the nanoparticle preparation process. Nanoparticles either co-encapsulating a highly hydrophobic polyester poly(oxy-2,2,4,4-tetramethyl-1,3-cyclobutanediyloxy-1,4-cyclohexanedicarbonyl) within the core or possessing crosslinkable groups around the core were also successfully fabricated for potential sustained release of ritonavir from block copolymer carriers. / Ph. D.
52

On the Melting and Crystallization of Linear Polyethylene, Poly(ethylene oxide) and Metallocene Linear Low-Density Polyethylene

Mohammadi, Hadi 27 August 2018 (has links)
The crystallization and melting behaviors of an ethylene/1-hexene copolymer and series of narrow molecular weight linear polyethylene and poly(ethylene oxide) fractions were studied using a combination of ultra-fast and conventional differential scanning calorimetry, optical microscopy, small angle X-ray scattering, and wide angle X-ray diffraction. In the case of linear polyethylene and poly(ethylene oxide), the zero-entropy production melting temperatures of initial lamellae of isothermally crystallized fractions were analyzed in the context of the non-linear Hoffman-Weeks method. Using the Huggins equation, limiting equilibrium melting temperatures of 141.4 ± 0.8oC and 81.4 ± 1.0oC were estimated for linear polyethylene and poly(ethylene oxide), respectively. The former and the latter are about 4oC lower and 12.5oC higher than these predicted by Flory/Vrij and Buckley/Kovacs, respectively. Accuracy of the non-linear Hoffman-Weeks method was also examined using initial lamellar thickness literature data for a linear polyethylene fraction at different crystallization temperatures. The equilibrium melting temperature obtained by the Gibbs-Thomson approach and the C2 value extracted from the initial lamellar thickness vs. reciprocal of undercooling plot were similar within the limits of experimental error to those obtained here through the non-linear Hoffman-Weeks method. In the next step, the Lauritzen-Hoffman (LH) secondary nucleation theory was modified to account for the effect of stem length fluctuations, tilt angle of the crystallized stems, and temperature dependence of the lateral surface free energy. Analysis of spherulite growth rate and wide angle X-ray diffraction data for 26 linear polyethylene and 5 poly(ethylene oxide) fractions revealed that the undercooling at the regime I/II transition, the equilibrium fold surface free energy, the strength of the stem length fluctuations and the substrate length at the regime I/II transition are independent of chain length. The value of the equilibrium fold surface free energy derived from crystal growth rate data using the modified Lauritzen-Hoffman theory matches that calculated from lamellar thickness and melting data through the Gibbs-Thomson equation for both linear polyethylene and poly(ethylene oxide). Larger spherulitic growth rates for linear polyethylene than for poly(ethylene oxide) at low undercooling is explained by the higher secondary nucleation constant of poly(ethylene oxide). While the apparent friction coefficient of a crystallizing linear polyethylene chain is 2 to 8 times higher than that of a chain undergoing reptation in the melt state, the apparent friction coefficient of a crystallizing poly(ethylene oxide) chain is about two orders of magnitude lower. This observation suggests that segmental mobility on the crystal phase plays a significant role in the crystal growth process. In case of the statistical ethylene/1-hexene copolymer, the fold surface free energies of the copolymer lamellae at the time of crystallization and melting increase with increasing undercooling, approaching the same magnitude at high undercooling. As a result of this temperature dependence, the experimental melting vs. crystallization temperature plot is parallel to the Tm = Tc line and the corresponding Gibbs-Thomson plot is non-linear. This behavior is attributed to the fact that longer ethylene sequences form a chain-folded structure with lower concentration of branch points on the lamellar surface at lower undercooling, while shorter ethylene sequences form lamellar structures at higher undercooling exhibiting a higher concentration of branch points on the lamellar surface. Branch points limit the ability of lamellar structures to relax their kinetic stem-length fluctuations during heating prior to melting. / Ph. D. / Morphology of semi-crystalline polymers is strongly affected by their crystallization conditions. Thermodynamic and kinetic models allow us to understand the crystallization mechanism of a semi-crystalline polymer and relate its crystallization conditions to the final morphology. In this research, we studied the molar mass dependence of the crystallization and melting behaviors of narrow molecular weight distribution linear polyethylene (LPE) and poly(ethylene oxide) (PEO) fractions using a modified Lauritzen-Hoffman (LH) secondary nucleation theory. We have shown that the equilibrium melting temperature of LPE and PEO fractions found from the non-linear Hoffman-Weeks method are within the experimental uncertainty identical with these measured directly for extended chain crystals or derived from a Gibbs-Thomson analysis. The value of the equilibrium fold surface free energy derived from crystal growth rate data using the modified LH theory matches that calculated from lamellar thickness and melting data through the Gibbs-Thomson equation for both LPE and PEO. We reported that the higher segmental mobility of PEO in the crystalline phase leads to significantly lower apparent chain friction coefficients during crystal growth compared to LPE. We also studied the role of short-chain branching in the crystal growth kinetics of ethylene/1-hexene copolymers. We observed that the fold surface free energies during crystallization and during melting are both function of the undercooling while the ratio of the former to the latter decreases with increasing undercooling. We proposed that this behavior may be related to the concentration of short-chain branches at the surface of the lamellae, where higher concentration leads to lower relaxation.
53

Size Exclusion Chromatography of Poly(2-ethyl-2-oxazoline) Homopolymers and Poly(ethylene oxide)-b-Poly(2-ethyl-2-oxazoline) Copolymers

Barnes, Suzanne R. 18 January 2014 (has links)
Size exclusion chromatography is the method of choice for characterizing molecular weights and molecular weight distributions of polymers. An important advancement in SEC is multidetection SEC which includes multi-angle laser light scattering, viscometry, refractive index and UV spectroscopy to analyze block and graft copolymers as well as polymers with oligomeric molecular weights. Oligomeric molecular weights present special challenges since the light scattering and viscosity detectors are more sensitive to higher molecular weights and both detectors have low molecular weight threshold values. The molecular weights and distributions of poly(2-ethyl-2-oxazoline) oligomers and block copolymers as well as poly(2-ethyl-2-oxazoline) were investigated by SEC using multiple detectors. Both a universal calibration method and light scattering were used to determine molecular weights and molecular weight distributions. The solvent was N-methylpyrrolidone that contained 0.05M LiBr used to minimize interactions among the polymers and solvent. SEC was used to establish that the diblock copolymers had heterogeneous compositional distributions. The low molecular weights of the diblock and homopolymer made it necessary to use the universal calibration method with combined refractive index and viscometry detectors to determine absolute molecular weights. / Master of Science
54

Crystallization and Melting Studies of Poly(ε-caprolactone) and Poly(ethylene oxide) using Flash™ Differential Scanning Calorimetry and Preparation and Characterization of Poly(δ-valerolactone) Fractions

Vincent, Matthew Ryan 03 July 2019 (has links)
The isothermal crystallization and melting temperatures of poly(ε-caprolactone) were correlated using fast differential scanning calorimetry. The melting kinetics was found to be independent of isothermal crystallization temperature and time. The conventional Hoffman-Weeks method could not be used to determine the equilibrium melting temperature because the observed melting temperatures were greater than the crystallization temperatures by a constant, so the Gibbs-Thomson method was used instead, yielding an equilibrium melting temperature of 103.4 ± 2.3°C. A modification was proposed to the non-linear Hoffman-Weeks equation that included a non-linear undercooling dependence for the kinetic fold surface free energy upon crystallization and permitted accurate modeling of the observed melting behavior. The isothermal crystallization rates of four narrow molecular weight poly(ethylene oxide) fractions were characterized using fast differential scanning calorimetry for crystallization temperatures spanning 100°C range with the lower limit approaching the glass transition. A transition from homogeneous to heterogeneous primary nucleation was observed at −5°C. The kinetic analysis suggested that the crystal growth geometry depends strongly on temperature, where rod-like structures begin to appear near the glass transition temperature, highly branched solid sheaves grow throughout the homogeneous primary nucleation temperature range, and spherulites grow in the heterogenous primary nucleation range. Poly(δ-valerolactone) was synthesized using microwave-assisted techniques. Narrow molecular weight fractions were obtained using successive precipitation fractionation. Preliminary isothermal crystallization studies suggest that conventional thermal analysis methods are not adequate to measure the melting temperatures accurately due to reorganization during heating. / Doctor of Philosophy / Plastics may be classified into two general categories: those which form ordered domains upon solidification, i.e. undergo crystallization, and those which remain disordered upon solidification, i.e. form glasses. This work is focused on studying the crystallization and melting processes in two linear polymers, poly(ε-caprolactone) and poly(ethylene oxide), using new experimental technology. In the case of poly(ε-caprolactone), the experimental data could not be rationalized by existing theories, and we have proposed modifications to these theories that explained the results. In the case of poly(ethylene oxide), the application of new experimental technology resulted in previously unreported data that indicated novel behavior at very low crystallization temperatures. In the last portion of this work, poly(δ-valerolactone) was made using a novel approach. Conventional experimental approaches to measuring the crystallization and melting behavior were shown to be inadequate.
55

Polymer Stabilized Magnetite Nanoparticles and Poly(propylene oxide) Modified Styrene-Dimethacrylate Networks

Harris, Linda Ann 15 May 2002 (has links)
Magnetic nanoparticles that display high saturation magnetization and high magnetic susceptibility are of great interest for medical applications. Nanomagnetite is particularly desirable because it displays strong ferrimagnetic behavior, and is less sensitive to oxidation than magnetic transition metals such as cobalt, iron, and nickel. Magnetite nanoparticles can be prepared by co-precipitating iron (II) and iron (III) chloride salts in the presence of ammonium hydroxide at pH 9-10. One goal of this work has been to develop a generalized methodology for stabilizing nanomagnetite dispersions using well-defined, non-toxic, block copolymers, so that the resultant magnetite-polymer complexes can be used in a range of biomedical materials. Hydrophilic triblock copolymers with controlled concentrations of pendent carboxylic acids were prepared. The triblock copolymers contain carboxylic acids in the central urethane segments and controlled molecular weight poly(ethylene oxide) tail blocks. They were utilized to prepare hydrophilic-coated iron oxide nanoparticles with biocompatible materials for utility in magnetic field guidable drug delivery vehicles. The triblock copolymers synthesized contain 3, 5, or 10 carboxylic acids in the central segments with Mn values of 2000, 5000 or 15000 g/mol poly(ethylene oxide) tail blocks. A method was developed for preparing ~10 nm diameter magnetite surfaces stabilized with the triblock polymers. The carboxylic acid is proposed to covalently bind to the surface of the magnetite and form stable dispersions at neutral pH. The polymer-nanomagnetite conjugates described in this thesis have a maximum of 35 wt. % magnetite and the nano-magnetite particles have an excellent saturation magnetization of ~66 - 78 emu/g Fe3O4. Powder X-ray diffraction (XRD) confirms the magnetite crystal structure, which appears to be approximately single crystalline structures via electron diffraction spectroscopy analysis (EDS). These materials form stable magnetic dispersions in both water and organic solvents. / Ph. D.
56

Solution and Adsorption Characterization of Novel Water-Soluble Ionic Block Copolymers for Stabilization of Magnetite Nanoparticles

Caba, Beth Lynn 22 May 2007 (has links)
There is a need for multifunctional polymer-particle complexes for use in biomedical applications such as for drug delivery or as MRI contrast agents where composition and stability are essential for the complexes to function. This work outlines a general methodology for rationally designing complexes stabilized with polymer brush layers using adapted star polymer models for brush extension and pair potential. Block copolymer micelles were first utilized for experimental validation by using the brush extension model to predict the size and the interaction model to predict the second virial coefficient, A2. Subsequently, the models were used to predict the size and colloidal stability of magnetite-polymer complexes using the modified Deryaguin-Verwey-Landau-Overbeek theory. Novel hydrophilic triblock copolymers comprised of poly(ethylene oxide) tailblocks and a carboxylic acid containing polyurethane center block were examined by static and dynamic light scattering (SLS and DLS), small angle neutron scattering (SANS), and densiometry. Under conditions when the charge is suppressed such as at low pH and/or high ionic strength, the polymer chains self-assemble into micelles, whereas unimers alone are present under conditions where charge effects are important, such as high pH and low ionic strength. A model for effective interaction between star polymers was used to obtain an expression for the second virial coefficient (A2) for micelles in solution. The values of A2 obtained using this method were compared with experimentally determined values for star polymers and micelles. In doing so, not only was a new means of calculating A2 a priori introduced, but the applicability of star polymer expressions to micellar systems was established. Through the analogy of micelles to sterically stabilized nanoparticles, this model was applied to water-soluble block copolymers adsorbed on magnetite nanoparticles for the purpose of tailoring a steric stabilizing brush layer. The sizes of the magnetite-polymer complexes were predicted using the star polymer model employed for the micelle study with an added layer to account for the anchor block. Colloidal stability was predicted from extended DLVO theory using the pair interaction. This work will lead to a better understanding of how to design ion-containing block copolymers for steric stabilization of metal oxide nanoparticles. / Ph. D.
57

Structure and Dynamics of Polyhedral Oligomeric Silsesquioxane (POSS) and Poly(Ethylene Glycol) (PEG) Based Amphiphiles as Langmuir Monolayers at the Air/Water Interface

Lee, Woojin 08 April 2008 (has links)
Throughout the study of polymeric Langmuir monolayers at the air/water (A/W) interface, the Wilhelmy plate and Langmuir-Blodgett (LB) techniques along with Brewster angle microscopy (BAM) have been identified as key methods for acquiring structural, thermodynamic, rheological and morphological information. These techniques along with surface light scattering (SLS), a method for probing a monolayer's dynamic dilational rheological properties, will be used to characterize homopolymers, poly(ethylene oxide) (PEO) and poly(ethylene glycol) (PEG), and a new class of novel polymeric surfactants, telechelic (POSS-PEG-POSS) and hemi-telechelic (POSS-PEG) polyhedral oligomeric silsesquioxane (POSS) derivatives of PEG. PEO with number average molar mass, Mn > ~ 18 kg·mol-1 form stable spread Langmuir films at the A/W interface, while oligomeric PEG have ï -A isotherms that deviate from high molar mass PEO. Nonetheless, SLS reveals that the dynamic dilational viscoelastic properties of any Mn PEG(PEO) only depend on ï and not Mn. Likewise, POSS-PEG-POSS telechelics exhibit molar mass dependent ï -A isotherms, where low ï regimes (ï < 1 mN·m-1) have PEG-like behavior, but high ï regimes were dominated by POSS-POSS interactions. SLS studies reveal that the dynamic dilational moduli of POSS-PEG-POSS are greater than either PEO or an analogous POSS compound, trisilanolcyclohexyl-POSS. The ability to control rheological properties and the hydrophilic-lipophilic balance even allows one POSS-PEG-POSS (PEG Mn = 1 kg·mol-1) to form Y-type LB-multilayer films. For POSS-PEG systems, comparisons at comparable POSS:PEG ratios reveal short PEG chains (PEG Mn ~ 0.5 kg·mol-1) yield similar viscoelastic properties as POSS-PEG-POSS (PEG Mn ~ 1 kg·mol-1), while longer PEG chains (PEG Mn ~ 2 kg·mol-1) yield lower modulus films than comparable POSS-PEG-POSS. These differences are attributed to brush-like PEG conformations in short POSS-PEG versus mushroom-like PEG conformations in long POSS-PEG at the A/W interface. These results provide insight for designing PEG-based amphiphilic nanoparticles with controlled interfacial rheology. / Ph. D.
58

Crystallization and Melting Behavior of Linear Polyethylene and Ethylene/Styrene Copolymers and Chain Length Dependence of Spherulitic Growth Rate for Poly(Ethylene Oxide) Fractions

Huang, Zhenyu 04 November 2004 (has links)
The crystallization and melting behavior of linear polyethylene and of a series of random ethylene/styrene copolymers was investigated using a combination of classical and temperature modulated differential scanning calorimetry. In the case of linear polyethylene and low styrene content copolymers, the temporal evolutions of the melting temperature, degree of crystallinity, and excess heat capacity were studied during crystallization. The following correlations were established: 1) the evolution of the melting temperature with time parallels that of the degree of crystallinity, 2) the excess heat capacity increases linearly with the degree of crystallinity during primary crystallization, reaches a maximum during the mixed stage and decays during secondary crystallization, 3) the rates of shift of the melting temperature and decay of the excess heat capacity lead to apparent activation energies that are very similar to these reported for the crystal ac relaxation by other techniques. Strong correlations in the time domain between the secondary crystallization and the evolution of the excess heat capacity suggest that the reversible crystallization/melting phenomenon is associated with molecular events in the melt-crystal fold interfacial region. In the case of higher styrene content copolymers, the multiple melting behavior at high temperature is investigated through studies of the overall crystallization kinetics, heating rate effects and partial melting. Low melting crystals can be classified into two categories according to their melting behavior, superheating and reorganization characteristics. Low styrene content copolymers still exhibit some chain folded lamellar structure. The shift of the low melting temperature with time in this case is tentatively explained in terms of reorganization effects. Decreasing the crystallization temperature or increasing the styrene content leads to low melting crystals more akin to fringed-micelles. These crystals exhibit a lower tendency to reorganize during heating. The shift of their melting temperature with time is attributed to a decrease in the conformational entropy of the amorphous fraction as a result of constraints imposed by primary and secondary crystals. To further understand the mechanism of formation of low melting crystals, quasi-isothermal crystallization experiments were carried out using temperature modulation. The evolution of the excess heat capacity was correlated with that of the melting behavior. On the basis of these results, it is speculated that the generation of excess heat capacity at high temperature results from reversible segmental exchange on the fold surface. On the other hand, the temporal evolution of the excess heat capacity at low temperature for high styrene content copolymers is attributed to the reversible segment attachment and detachment on the lateral surface of primary crystals. The existence of different mechanisms for the generation of excess heat capacity in different temperature ranges is consistent with the observation of two temperature regimes for the degree of reversibility inferred from quasi-isothermal melting experiments. In a second project, the chain length and temperature dependences of spherulitic growth rates were studied for a series of narrow fractions of poly(ethylene oxide) with molecular weight ranging from 11 to 917 kg/mol. The crystal growth rate data spanning crystallization temperatures in regimes I and II was analyzed using the formalism of the Lauritzen-Hoffman (LH) theory. Our results are found to be in conflict with predictions from LH theory. The Kg ratio increases with molecular weight instead of remaining constant. The chain length dependence of the exponential prefactor, G0, does not follow the power law predicted by Hoffman and Miller (HM). On this basis, the simple reptation argument proposed in the HM treatment and the nucleation regime concept advanced by the LH model are questioned. We proposed that the observed I/II regime transition in growth rate data may be related to a transition in the friction coefficient, as postulated by the Brochard-de Gennnes slippage model. This mechanism is also consistent with recent calculations published by Toda in which both the rates of surface nucleation and substrate completion processes exhibit a strong temperature dependence. / Ph. D.
59

Caractérisation de copolymères à blocs à base de poly(oxyde d’éthylène) et de polystyrène par des techniques de chromatographie liquide avancées / Characterization of poly(ethylene oxide) and polystyrene based block copolymers by advanced high performance liquid chromatography techniques

Rollet, Marion 17 December 2015 (has links)
Différentes techniques de chromatographie liquide des polymères ont été étudiées selon leur principe d’élution et le comportement conformationnel des polymères suscité au sein de la phase stationnaire. De part leur capacité à caractériser des copolymères à blocs, la Chromatographie Liquide aux Conditions Critiques (LC CC) et la Chromatographie Liquide aux Conditions Limites de Désorption (LC LCD) ont été utilisées pour déterminer la composition chimique de copolymères à blocs à base de poly(oxyde d’éthylène) et de polystyrène. La LC LCD s’est distinguée par sa capacité à séparer de manière efficace les copolymères à blocs de leurs homopolymères parents. Cette méthode chromatographique a ensuite été optimisée afin d’être appliquée à une plus large gamme de masses molaires. / Several advanced techniques of liquid chromatography of polymers were studied according to their elution principle and the conformational behaviour of polymers along the stationary phase. Because of their potential to characterize block copolymers, Liquid Chromatography under Critical Conditions (LC CC) and Liquid Chromatography under Limiting Conditions of Desorption (LC LCD) were employed to determine the chemical composition of Poly(ethylene oxide) and Polystyrene based block copolymers. Interestingly, LC LCD was proved to be particularly efficiently to separate block copolymers from both their parent homopolymers. LC LCD method was then optimized to extend the applicable molar masses ranges.
60

Vibrational Sum Frequency Spectroscopy Studies at the Air-Liquid Interface

Tyrode, Eric January 2005 (has links)
In this thesis the structure and hydration of small organic and amphipilic compounds adsorbed at the air-liquid interface, have been studied using the nonlinear optical technique Vibrational Sum Frequency Spectroscopy (VSFS). The second order nature of the sum frequency process makes this technique particularly surface sensitive and very suitable for interfacial studies, as molecules at the surface can be distinguished even in the presence of a vast excess of the same molecules in the bulk. Particular emphasis was given to the surface water structure and how it is affected by the presence of small model compounds such as acetic acid and formic acid, and also non-ionic surfactants with sugar based and ethylene oxide based polar headgroups. Understanding the structure of water at these interfaces is of considerable fundamental importance, and here VSFS provided unique information. Upon addition of tiny amounts of these surface active compounds, the ordered surface structure of water was found to be significantly perturbed, as revealed by the changes observed in the characteristic spectroscopic signature of the dangling OH bond of water molecules, which vibrate free in air and are present in the top monolayer. Dramatic differences between the different compounds were also observed in the bonded OH region, providing a valuable insight into the hydration of polar groups at interfaces. Additionally, by employing different polarization combinations of the laser beams involved in the sum frequency process, information about the different water species present at the surface and their average orientation were extracted. In particular an unusual state of water was found with a preferred orientation in a non-donor configuration in close proximity to the hydrophobic region formed by the hydrocarbon tails of the surfactant molecules. The conformation and orientation of the different adsorbates were also characterized, targeting their specific vibrational frequencies. Noteworthy is the orientation of the fluorocarbon chain of ammonium perfluorononanoate (APFN), which in contrast to the hydrocarbon chains of the other surfactant molecules studied, remained constant over a wide range of surface densities. This behaviour was also observed for the anionic headgroup of sodium dodecyl sulphate (SDS). Other interesting findings were the formation of a cyclic dimer bilayer at the surface of concentrated aqueous solutions of acetic acid and the water structuring effect induced by poly(ethylene-oxide) headgroups, in spite of being themselves disordered at the air-liquid interface.

Page generated in 0.1819 seconds