Spelling suggestions: "subject:"chlorinated.""
131 |
Heavy Metal, Organochlorine Pesticide and Polychlorinated Biphenyl Contamination in Arctic Ground Squirrels (Spermophilus Parryi) in Northern AlaskaAllen-Gil, S. M., Landers, D. H., Wade, T. L., Sericano, J. L., Lasorsa, B. K., Crecelius, E. A., Curtis, L. R. 01 December 1997 (has links)
Heavy metal and organochlorine (OC) concentrations, including organochlorine pesticides and polychlorinated biphenyl congeners (PCBs), were determined in arctic ground squirrels (Spermophilus parryi) from three sites in the Brooks Range of northern Alaska in 1991-93. Heavy metals were present in most squirrel livers collected, with concentrations of trace elements (As, Cd, Hg, Ni, and Pb) averaging below 1 μg/g wet weight. Hexachlorobenzene (HCB), p,p'-DDE, gamma hexachlorocyclohexane (γ-HCH), trans-nonachlor, and PCBs 138, 153, and 170 were the most frequently detected OCs in fat and liver. Average concentrations of individual OC analytes were below 20 ng/g wet weight in liver and below 15 ng/g wet weight in fat. Rank correlations indicate that concentrations of heavy metals and of OCs accumulate in concert with one another (As, Cd, Cu, and Zn; PCBs 138, 170, and 180). Although heavy metal and OC concentrations are low relative to other areas and other arctic species, the occurrence of these compounds illustrates the global pervasiveness of persistent organic compounds and the potential for bioaccumulation in the terrestrial arctic food web.
|
132 |
Determination, mobilization and dechlorination of polychlorinated biphenyl (PCB) compounds in contaminated soilsWu, Qixiang January 2001 (has links)
No description available.
|
133 |
Neurobehavioral and Neuroendocrine Assessment of Rats Perinatally Exposed to Polychlorinated Biphenyls: A Possible Model for AutismKrishnan, Dena K. 25 June 2007 (has links)
No description available.
|
134 |
Investigating the Effects of Polychlorinated Biphenyls on Circulating Oxytocin Levels, Area of the Paraventricular Nucleus and Social Behavior in Juvenile Male RatsJolousjamshidi, Banafsheh 05 July 2007 (has links)
No description available.
|
135 |
Comparison Between PCB Exposure and Hypothyroidism: Behavioral Development in Sprague-Dawley RatsToth, Cynthia L. 29 July 2009 (has links)
No description available.
|
136 |
BIOACCUMULATION OF POLYCHLORINATED BIPHENYLS IN THE NORTHERN DIAMONDBACK TERRAPIN (Malaclemys terrapin terrapin)Ismail, Niveen January 2010 (has links)
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that can bioaccumulate in organisms. PCBs are documented endocrine disrupting chemicals and are known to cause developmental, reproductive, and neurobiological disorders. This study examines the bioaccumulation of PCBs in the northern diamondback terrapin (Malaclemys terrapin terrapin), a species that is endemic to the brackish waters of the East Coast salt marshes of the United States. The two populations studied are located in Cape May County, NJ, a site with low levels of contamination and Jamaica Bay, NY, which is a highly contaminated site. While PCBs bioaccumulation has been extensively researched, many studies involve lethal sampling techniques. Such techniques can be detrimental to populations and may not be viable for long-term studies. This study examined the utility of the chorioallantoic membrane (CAM) as a non-lethal sampling technique for PCB analysis. In order to determine the viability of the CAM, maternal transfer of contaminants was also analyzed. Ten terrapin samples from each field location were analyzed. Egg and CAM samples were obtained from both field sites and liver samples were also collected from Cape May County terrapins. PCB levels and congener profiles were similar in both field locations. While PCB congeners were detected in liver, egg, and CAM samples, less chlorinated congeners preferentially partitioned in the CAM. Liver and egg sample PCB concentrations were strongly correlated, but the CAM concentrations were weakly correlated to liver and egg samples. Examination of homolog groups indicated a strong correlation between hexachlorinated biphenyls in all three sample types. Preliminary study results indicated that maternal transfer of PCB contaminants does occur with selective partitioning of congeners into the CAM. / Biology
|
137 |
Origin of Dioxins in Queensland: Investigations into the Distribution and Sources of Polychlorinated Dibenzo-P-Dioxins in the Queensland Terrestrial EnvironmentPrange, Joelle, n/a January 2004 (has links)
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are persistent organic pollutants of global concern as they are persistent, toxic and can biomagnify through the food chain. PCDD/Fs are generally regarded as trace contaminants in a number of chemical products and they are formed as by-products from various industrial, chemical and combustion processes. The pollution with PCDD/Fs occurs with the release of these chemicals into the environment, resulting in the contamination of various compartments including; air, soil, sediment and biota. Studies that have investigated the distribution of PCDD/Fs in the environment suggest that the highest concentrations of these pollutants are found in locations with a history of industrial or chemical PCDD/F sources. Queensland is the north-eastern state of Australia. Queensland has a low population density, few industrial activities and is considered predominantly rural. Therefore it was somewhat surprising that elevated concentrations of PCDD/Fs (in particular the higher chlorinated PCDDs) have been observed in soil and sediments samples collected from various locations along the Queensland coast. The concentrations of PCDDs in Queensland samples were comparable to or higher than concentrations in similar matrices from highly polluted regions elsewhere. To investigate the origin of PCDDs in Queensland, the geographical distribution of PCDD/Fs in topsoil was investigated in the coastal and inland environments to provide information on the potential sources and to estimate the extent of the PCDD contamination. Distinct east-west gradients were detected in topsoil collected from bushland areas across the state with elevated PCDD concentrations confined to the coastal region. Within the coastal region, the contamination could not be associated with specific land uses. In fact, the PCDD/F congener profile was similar in the majority of samples from the coastal region, with a dominance of the higher chlorinated PCDDs (in particular OCDD), whereas PCDFs were low or below the limit of detection. The similarity in the PCDD/F congener profiles in the soils along the coastal region indicated that a source of PCDDs of similar origin has resulted in the contamination of soil extending more than 3000 km and estimations suggest that more than 50 tonnes of OCDD is stored in the topsoil of Queensland.s coastal region. Investigation into the vertical distribution of PCDDs in Queensland coastal soils revealed elevated concentrations of PCDDs, (in particular OCDD) in soils to at least 3.5 m. These results indicated that the extent of the PCDD contamination is significantly greater than anticipated and it was estimated that there is in the order of 3 000 tonnes of OCDD stored in Queensland's coastal soils. The specific PCDD/F congener profile in Queensland coastal soils is unlike known PCDD/F source profiles which led to the suggestion that some yet unidentified formation mechanism may have resulted in the contamination. Potential natural sources of PCDD/Fs, including forest fires, geogenic and biogenic processes were assessed as possible origins for the PCDD contamination in Queensland. Elevated concentrations of PCDDs were detected in the atmosphere during a 'prescribed burn'. This study demonstrated that although forest fires influence atmospheric PCDD/F concentrations substantially, forest fires are not the source of PCDDs in Queensland; rather they are an important mechanism for the redistribution of PCDDs and may have attributed to the widespread PCDD contamination. In this study geological materials (oil shale and kaolin) were analysed as a proxy to assess a geogenic origin of PCDDs. Elevated concentrations of PCDDs were observed in the kaolin samples, however similar and higher concentrations were detected in surface and sub-surface soils, suggesting that specific geogenic formation processes investigated are not the source of PCDDs in Queensland. A preliminary indication for a biogenic origin of PCDDs was identified during the anaerobic incubation of sugarcane irrigation sediments. An increase in the concentration of OCDD in the anaerobic treatment, compared to the control was observed after incubation for 90 days. In these same experiments, a dechlorination of OCDD to lower chlorinated (1,4,6,9-substituted) PCDDs was also observed. Similar transformation processes were observed in other anaerobic environments in Queensland, which led to the suggestion that a biogenic formation of PCDDs (possibly from a precursor) may be responsible for the origin of PCDDs in Queensland.
|
138 |
Particulate and gas-phase PCBs and OH-PCBs in Chicago airAwad, Andrew Magdi 01 July 2015 (has links)
This study extends the work we have previously done by reporting on both gas-phase and particulate phase PCB concentrations in Chicago air as well as giving a first report on airborne OH-PCBs in Chicago. Gas phase PCB concentrations ranged from 43.1 pg/m³ to 2250 pg/m³, with an average concentration of 594 pg/m³ ± 445 pg/m³, and exhibited strong temporal trends. Particulate phase PCBs accounted on average for 4.3% of total PCBs in a sample. OH-PCBs were detected in both the gas and particulate phase and exhibit characteristics of either emission sources or atmospheric reactions depending on the congener.
|
139 |
Dioxins in the Marine Environment: Sources, Pathways and Fate of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Queensland, AustraliaGaus, Caroline, n/a January 2003 (has links)
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans(PCDFs) are two groups of lipophilic, persistent organic pollutants that are produced as by-products of various anthropogenic and industrial processes. Due to their relatively high toxic potencies and potential to bioaccumulate and biomagnify in organisms and through the food chain, the contemporary widespread distribution of these compounds is a concern to the health of the environment, wildlife and humans. This study determined the distribution, pathways and fate of PCDD/Fs in the coastal zone of Queensland, Australia, including the inshore marine environment of the World Heritage Great Barrier Reef Marine Park. This ecosystem supports unique fauna and flora such as the marine herbivorous mammal dugong (Dugong dugon) and its food source, seagrass. Elevated PCDD/Fs were present in soils and sediments along the entire Queensland coastline. Highest concentrations were found in soil from agricultural irrigation drains and in sediments near the mouths of major rivers. Elevated concentrations were associated with rural and urban types of land-use, and PCDD/Fs were present even in locations remote from anthropogenic activities. PCDD/F congener-specific analysis revealed an unusual profile in all samples, dominated by OCDD, with PCDFs present in low concentrations or below the limit of detection. Distinct HxCDD isomer patterns were observed, with the 1,2,3,7,8,9-HxCDD/1,2,3,4,6,7-HxCDD isomer pair dominating the 2,3,7,8-substituted HxCDDs. Similar congener and isomer characteristics were reported in sediments, soil and clay samples from other continents, but could not be attributed to any known source. Possible PCDD/F sources in Queensland were assessed using segmented estuarine sediment cores, for which radiochemical chronologies were established for each depth. Variations of PCDD/F concentrations in the sediment cores over several centuries of depositional history were relatively small. Elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F homologue profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. These results suggested the presence of an unidentified PCDD source prior to the production of commercial organochlorine products. To investigate the formation of the unusual PCDD/F profiles, congener and isomer specific analyses were undertaken in soils, sediments and dated sediment cores. The results demonstrated that specific transformation processes in the environment have resulted in the observed PCDD profile characteristics. Dechlorination of OCDD was proposed to result in distinct 1,4-pattern characteristics (i.e. formation of isomers chlorinated in the 1,4,6,9-positions). Consequently, the environmental samples do not reflect the signatures of the original source. An alternative hypothesis to natural formation is discussed evaluating these processes and their implications for possible source contributions. This hypothesis explores the potential for the influence of anthropogenic PCDD precursors (e.g. pentachlorophenol) during the 1940s to 1990s. Transport of PCDD/Fs from the land-based source via impacted tributary river systems, and subsequent deposition processes are proposed to result in PCDD/F accumulation in the inshore marine ecosystem. The extent of the sediment PCDD/F contamination governs the concentrations in the extensive inshore marine seagrass meadows of Queensland. Partitioning processes in the sediment-seagrass system lead to increased toxic equivalency (TEQ) in the seagrass, compared to sediment.The relationship between contaminated inshore sediments, seagrass and dugongs were evaluated using six dugong habitat regions along the coastline. PCDD/F body burdens in dugongs are governed by sediment (and seagrass) PCDD/F concentrations in their habitat. High seagrass (and incidental sediment) ingestion rates, selective retention of toxicologically potent congeners and relatively low PCDD/F elimination capacities in dugongs are proposed to result in elevated PCDD/F concentrations and TEQ levels in adult animals. Transfer efficiencies of 4 and 27% of maternal TEQ levels to foetuses and calves (respectively) during gestation and lactation result in relatively high exposure potentials to offspring. Compared to no-observed-adverse-effect-levels in other mammals, and based on the results of this study, a tolerable daily intake (TDI) of 10-24 pg TEQ kg-1 day-1 was estimated for dugongs. The results of the present study found that dugongs from some regions along the coastline of Queensland exceed this TDI by up to 20 fold, suggesting that these populations may be at risk from PCDD/F contamination in their habitat. These results have important implications for the health of the environment, wildlife and humans and were used to develop a conceptual understanding of the sources, pathways and fate of dioxins in Queensland, Australia.
|
140 |
Analysis of semi-volatile organic contaminants and their accumulation in remote aquatic ecosystems of the western U.S. /Ackerman, Luke K. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 102-117). Also available on the World Wide Web.
|
Page generated in 0.1096 seconds