Spelling suggestions: "subject:"chlorinated.""
151 |
Tratamento de solos contaminados com bifenilas policloradas (PCBs). / Contaminated soils treatment with polychlorinated biphenyls (PCBs).Policarpo, Nara Angélica 30 April 2008 (has links)
Devido à alta toxicidade, a produção e comercialização dos PCBs (Polychlorinated Biphenyls - Bifenilas Policloradas) estão proibidas no mundo todo. Esses compostos foram utilizados principalmente como base de misturas comerciais em óleos dielétricos para transformadores e capacitores. Hoje existem diversas áreas contaminadas com essas substâncias que são de difícil degradação ocasionada pela sua elevada estabilidade térmica e química. Há diversos estudos sobre diferentes técnicas de tratamento de áreas contaminadas por PCBs. A técnica proposta nesse trabalho foi a de oxidação química através do reagente de Fenton. Para isso, foi simulado em laboratório experimentos de tratamento de solo contaminados artificialmente por ascarel (mistura comercial de PCBs). A oxidação foi realizada segundo a técnica do planejamento experimental fatorial de dois níveis e duas variáveis. Manteve-se constante a concentração do contaminante - em torno de 6000 mg de PCB/ kg de solo - e variou-se a concentração de Fe2+ (0,04 a 0,1 mol/L) e H2O2 (2,07 a 4,15 mol/L). Os ensaios foram realizados ainda nos seguintes tempos de reação: 0, 5, 24 e 48 horas. A análise dos dados foi realizada através de cromatografia gasosa acoplada a um espectrômetro de massa - GC/MS. Dos resultados, concluiu-se que o experimento cuja concentração do reagente de Fenton era 4,15 mol/L de H2O2 e 0,04 mol/L de Fe2+, apresentou melhor percentual de remoção, em torno de 76% para o pentaclorobifenila, 67% para o hexaclorobifenila e 72% para o heptaclorobifenila. Além disso, observou-se que, dentro da região experimental estudada, o efeito da concentração de íons ferrosos foi mais significativo do que o causado pela concentração de peróxido de hidrogênio e que o mesmo tem um efeito negativo pois aumentando a concentração dos íons ferrosos diminui-se a remoção dos contaminantes. / Production and trading of polychlorinated biphenyls (PCBs) are prohibited at whole world due to their high toxicity. They were used mainly as dielectric oils for transformers and capacitors. Recently there are many contaminated areas with these compounds. The high thermic and chemistry stability of PCBs are responsible for their hard degradation. Many studies have been conducted about several techniques of soil remediation. The main purpose of this research is to study chemical oxidation using Fenton\'s reagent to soils treatment. It was simulated in laboratory experiments of soil treatment which was artificially contaminated with Ascarel (PCBs commercial mixture). Process oxidation was made according to factorial experimental planning technique of two levels and two variables (22). The contaminant concentration was constant - 6000 mg PCB/ kg soil - and it was varied the Fe2+ concentration (0,04 mol/L to 0,10 mol/L) and H2O2 concentration (2,07 mol/L to 4,15 mol/L). The times reaction of experiments were: 0, 5, 24 and 48 hours. It was used gas chromatography coupled with mass spectrometer - GC/MS. The better result shown removal rate of 76% to pentachlorobiphenyl, 67% to hexachlorobiphenyl and 72% to heptachlorobiphenyl, experimental conditions were Fe2+ concentration of 0,04 mol/L and H2O2 concentration of 4,15 mol/L. Besides it was observed that studied region the concentration effect of ferrous ions was more significant than concentration effect of hydrogen peroxide. The concentration effect of ferrous ions was negative on system because removal rate of contaminants decreases when [Fe2+] increases.
|
152 |
Ocorrência de Pesticidas Organoclorados e Bifenilos Policlorados em tartarugas marinhas Chelonia mydas / Occurrence of organochlorine pesticides and polychlorinated biphenyls in sea turtles Chelonia mydasSilva, Josilene da 25 June 2009 (has links)
Os compostos organoclorados (OCs), como pesticidas e bifenilos policlorados (PCBs), são persistentes, tóxicos e amplamente distribuídos através do transporte atmosférico e correntes oceânicas. Poucos são os estudos realizados de OCs em tartarugas, sendo que nenhum foi realizado na costa brasileira. A Chelonia mydas é a maior tartaruga marinha de carapaça dura, que se distribue por todos os oceanos, nas zonas de águas tropicais e subtropicais. O presente trabalho visa verificar a ocorrência de organoclorados na espécie C. mydas, bem como sua possível relação com algum tipo de alteração morfológica ou fisiológica. Foram coletadas amostras de gordura, fígado, rim e músculo em 27 espécimes juvenis do litoral de Ubatuba, São Paulo. Os organoclorados foram extraídos com solventes orgânicos e o extrato foi purificado com ácido concentrado. A identificação e quantificação dos PCBs e pesticidas foram realizadas em cromatógrafo a gás com espectrômetro de massas e com detector de captura de elétrons, respectivamente. Os pesticidas organoclorados não foram detectados em nenhuma amostra. As concentrações de PCBs totais em peso úmido foram de: <1,6 48,9 ng.g-1 em gordura, <1,6 17,4 ng.g-1 no fígado e <1,6 9,2 ng.g-1 no rim. Os baixos níveis encontrados estão relacionados principalmente a sua dieta alimentar, uma vez que a C. mydas é basicamente herbívora, e ao local de coleta, que é uma região não industrializada. / Organochlorine compounds, such as pesticides and polychlorinated biphenyls (PCBs), are persistent, toxics and widely distributed due to the atmospheric transport and oceanic currents. Few studies have reported the occurrence of these compounds in turtles, but none from the Brazilian Coast. Chelonia mydas is the biggest marine turtle with hard carapace that extends throughout tropical and subtropical seas around the world. The present study aims to assess the concentrations of organochlorines in the C. mydas as well as any relationship with morphological or physiological variations. Fat, liver and kidney samples were collected from 27 juvenile specimens found dead in Ubatuba Coast, São Paulo State. Organochlorine were extracted with organic solvents and the extracts were purified with concentrated acid. PCBs and pesticides were identified and quantified using a gas chromatograph with mass spectrometer and with electron capture detector, respectively. Pesticides were not detected in any sample analyzed. PCBs concentrations in wet weight were: <1.6 48.9 ng.g-1 in fat, <1.6 17.4 ng.g-1 in liver and <1.6 9.2 ng.g-1 in kidney. The low levels detected are related, especially, to the feeding habits of the species since C. mydas is mainly herbivore, and to a non industrialized sampling area.
|
153 |
Toxicidade equivalente da atmosfera por dioxinas, furanos e bifenilas policloradas,com uso de duas técnicas de coleta, passiva e ativa / Equivalent toxicity of the atmosphere for dioxins, furans and polychlorinated biphenyls, using two air sampling techniques, passive and activeAna Paula Francisco 13 June 2017 (has links)
Introdução: Dioxinas, furanos e bifenilas policloradas são poluentes tóxicos para a saúde humana incluindo riscos de incidência de cânceres, efeitos de neurodesenvolvimento, lesões dérmicas, cloroacne. Estes compostos são poluentes orgânicos persistentes (POPs) que podem ser transportados de longas distâncias da fonte de emissão e se bioacumular em ecossistemas. A atmosfera poluída foi recentemente classificada como carcinogênica para os seres humanos pela Organização Mundial da Saúde, mostrando a importância de sua caracterização, principalmente para compostos tóxicos. Entretanto, técnica de coleta ativa tem custo elevado para POPs, e existem poucos estudos de calibração que validem a substituição. Objetivos: Avaliar a toxicidade equivalente da atmosfera por dioxinas, furanos e bifenilas cloradas, utilizando técnicas de coleta ativa e passiva, e verificar gradiente de concentração nos ambientes urbano, urbano/industrial e de background. Método: Amostras de ar foram coletadas, utilizando coletores ativos e passivos, durante dois períodos consecutivos de quatro meses: de setembro a dezembro de 2014 (período 1) e de maio a agosto de 2015 (período 2) em três cidades de São Paulo, SP, em ambientes urbano, urbano/industrial e de background. Todas as amostras foram extraídas com solução de tolueno:acetona (9:1) em Soxhlet por 24 h e padrões marcados (13C12-PCDD/Fs e 13C12-PCBs) foram adicionados em cada amostra antes do processo de extração. Os extratos foram purificados em coluna de sílica mista (40 por cento H2SO4 e 10 por cento AgNO3) seguida por coluna de alumina. O procedimento analítico foi realizado utilizando HRGC/HRMS (High Resolution Gas Chromatograph/High Resolution Mass Spectrometer) operando em ionização de impacto de elétrons com energia de 35 eV no modo SIM (Select Ion Monitoring) e resolução de 10.000. Resultados mostraram que: (1) existe variação sazonal para concentrações de PCDD/Fs no ar entre os períodos 1 e 2 (p=0,03), enquanto as concentrações de dl-PCBs não foram estatisticamente diferentes nestes períodos (p=0,52); (2) existe gradiente de concentração de PCDD/Fs e dl- PCBs que aumenta na seguinte ordem: background<urbano<urbano/industrial, porém não foi encontrada diferença significante entre as concentrações dos locais urbano e urbano/industrial para as amostras da coleta ativa; (3) as concentrações de PCDD/Fs e dl-PCBs das amostras do coletor ativo variaram de 9,34 a 221 fg TEQ/m³ no período 1, e entre 7,76 a 453 fg TEQ/m³ no período 2; nas amostras dos coletores passivos estas concentrações variaram de 6,11 a 32,2 fg TEQ/m³ no período 1, e entre 48,6 e 298 fg TEQ/m³ no período 2; (4) a estimativa da taxa de coleta utilizando duas abordagens diferentes mostrou discrepâncias. Conclusões: Os resultados dos coletores ativos e passivos estão em boa concordância em termos de tendências espacial e temporal, assim como os perfis de congêneres e grupos homólogos, a coleta passiva com disco de PUF mostrou-se como uma técnica adequada para determinação de PCDD/Fs e dl-PCBs / Introduction: Dioxins, furans and polychlorinated biphenyls are toxic pollutants for human health including risks of cancer incidence, neurodevelopmental effects, dermal lesions, chloracne. These compounds are persistent organic pollutants (POPs) that can be transported to long distances from the emission source and they are bioaccumulated in ecosystems. Recently, the outdoor air pollution were classified as carcinogenic to humans by the World Health Organization, showing the importance of its characterization for toxic compounds. However, active air monitoring has a high cost for POPs, and there is a few calibration studies which support that substitution. Objective: To assess the equivalent toxicity of the atmosphere regarding the measurement of dioxins, furans and polychlorinated biphenyls, using active and passive air samplers, and to evatuate the contrasting concentrations at urban, urban/industrial and background sites. Method: Air samples were collected, using active and passive samplers, over two consecutive periods of four months: from September to December 2014 (period 1) and from May to August 2015 (period 2) at three cities in São Paulo, SP, covering urban, urban/industrial and background sites. All samples were extracted with toluene:acetone (9:1) in a Soxhlet apparatus for 24 hours and surrogate standards (13C12-PCDD/F and 13C12-PCBs) were spiked on each sample media prior to extraction procedure. The extracts were purified on an silica column (40 per cent H2SO4 and 10 per cent AgNO3) followed by an alumina column. The analytical procedure was carried out using HRGC/HRMS (High Resolution Gas Chromatograph/High Resolution Mass Spectrometer) operating in electron impact ionization with an energy of 35 eV in SIM (selected ion monitoring) mode and 10.000 resolution power. Results show that (1) there are seasonal variations for PCDD/F concentrations in air between period 1 and 2 (p=0.03), whereas dl-PCB levels were not statistically different (p=0.52) in those periods. (2) PCDD/F and dl-PCB air levels are in the following order: background <urban <urban/industrial for both active and passive samplers; (3) PCDD/F and dl-PCB concentrations in active air samples ranged from 9.34 to 221 fg TEQ/m³ in period 1, and between 7.76 and 453 fg TEQ/m³ in period 2; in the passive air samples, these concentrations ranged from 6.11 to 32.2 fg TEQ/m³ in period 1, and between 48.6 and 298 fg TEQ/m³ in period 2; (4) the estimation of sampling rate using two approachs for PCDD/Fs showed differences. Conclusions: Passive and active air sampling results are in good agreement in spatial terms and temporal trends, as are the congener and homologue profiles, showing that passive air sampling of PUF disk is a powerful sampler for PCDD/F and dl-PCB measurements
|
154 |
Regulatory crosstalk and interference between the PCB 126 stimulated AHR and hypoxia stimulated HIF-1α signaling pathwaysVorrink, Sabine Ulrike 01 May 2014 (has links)
Polychlorinated biphenyls (PCBs) are synthetic organic chemicals that persist in the environment and are known to be carcinogenic to humans. Virtually all of the deleterious effects of PCB 126, the most potent dioxin-like PCB, are mediated by the aryl hydrocarbon receptor (AhR). By means of the common cofactor ARNT, the AhR signaling pathway can crosstalk with the hypoxia signaling pathway. Regulated by hypoxia-inducible factors (HIFs), the hypoxia pathway mediates responses to environments of reduced oxygen availability (hypoxia). This dissertation specifically examines the crosstalk and interference between these two pathways in the context of PCB 126 exposure. The results of this dissertation show that the antagonistic relationship between the AhR and hypoxia signaling pathways affects the function and responses of both AhR and HIF-1Α. We provide substantial evidence that ARNT is indeed a crucial factor in both the AhR and HIF-1Α signaling pathways. Furthermore, this dissertation examines regulatory mechanisms involved in AhR-mediated gene expression and identifies epigenetic regulation as a critical factor in AhR target gene expression. In summary, this dissertation helped to improve the understanding of mechanisms of PCB 126 toxicity. Understanding the detrimental biological effects of these ubiquitous environmental pollutants might ultimately have significant implications for human health.
|
155 |
Development of the polyurethane foam passive air sampler for novel applications in ambient air across the globeHerkert, Nicholas John 01 May 2018 (has links)
Our understanding about the presence, behavior, and toxicities of atmospheric persistent organic pollutants is limited by our ability to accurately measure them. This dissertation details the development and characterization of a model for the determination of an accurate sampling rate (Rs), and effective sampling volume (Veff), for polyurethane equipped passive air samplers (PUF-PAS), and the subsequent application of PUF-PAS sampling methods towards novel applications studying polychlorinated biphenyls (PCBs).
The user friendly mathematical model resulting from this work, published as a Matlab script, predicts Rs and Veff as a function of local hourly meteorology and the physical-chemical properties of the target analytes. The model was first developed using active sampling methods in urban Chicago, where good agreement was found between the PUF-PAS and high volume active samplers: Active/Passive = 1.1 ± 1.2. The model was then expanded and calibrated globally using the dataset from the Global Atmospheric Passive Sampling (GAPS) network. After this global calibration we found acceptable agreement between modelled and depuration-determined sampling rates for an independent dataset, with several compounds having near zero mean percent bias (±6%). The globally applicable model is the best alternative for locations experiencing low average wind speeds or cold temperatures, and is particularly useful for the interpretation of samples with long deployments, deployments conducted under warming conditions, and compounds with high volatility. An interactive web-based graphical user interface for the sampling rate model was developed. Users input sampler locations, deployment dates, and target chemicals, in the web-interface and are provided with a sample and compound specific Rs and Veff.
The sampling rate model was examined for use in the indoor environment and it was found that both the experimentally calibrated (1.10 ± 0.23 m3 d-1) and modeled (1.08 ± 0.04 m3 d-1) Rs agreed with literature reports. Correlating sample specific wind speeds with uptake rates, it was determined that variability of wind speeds throughout the room significantly (p-value < 0.001) affected uptake rates. Despite this, the PUF-PAS concentration measurements using modelled Rs values were within 27% of the active sampling determined concentration measurements.
Using PUF-PAS samplers, PCBs 47, 51, and 68 were found to account for up to 50% of measured indoor sum PCB concentration (2700 pg m-3). Direct surface measurements were conducted to identify finished cabinetry to be a major source, as a result of the decomposition of 2,4-dichlorobenzoyl peroxide used as an initiator in free-radical polymerization of polyester resins. While this phenomenon has been detected at trace levels in other polymer products, it has never been shown to be a significant environment source of PCBs.
PUF-PAS samplers were similarly used to study the presence of airborne hydroxylated polychlorinated biphenyls (OH-PCBs) and PCBs in the metropolitan Chicago area. While OH-PCBs have been hypothesized to be an important removal mechanism for atmospheric PCBs, they were not directly measured in the air until recently. The two most frequently detect OH-PCB congeners in this study, 2OH-PCB2 and 6OH-PCB2, were detected at levels comparable to a previous report of atmospheric OH-PCBs utilizing active sampling methods, suggesting the viability of PUF-PAS methods to study atmospheric OH-PCBs. One sampling site detected as many as 50 OH-PCBs but uncertainties with sampling and laboratory methods prevent any strong conclusions from being drawn.
|
156 |
Structure-activity relationships for interactions of hydroxylated polychlorinated biphenyls with human hydroxysteroid sulfotransferase hSULT2A1Ekuase, Edugie Jennifer 01 May 2011 (has links)
Industrial chemicals known as polychlorinated biphenyls (PCBs) were widely used for decades until their production was banned worldwide due to their persistence and toxicities to humans and other animals. Upon oxidative metabolism by cytochrome P450, hydroxylated metabolites of PCBs (OHPCBs) are formed. OHPCBs have been shown to competitively displace thyroxine from transthyretin, block normal hormonal activity, and inhibit phenol or family 1 sulfotransferases (SULTs) which catalyze sulfation of thyroid hormones and estrogens. Recently, three OHPCBs were shown to also interact with hydroxysteroid or family 2 sulfotransferases that play a role in the homeostasis of steroid hormones such as dehydroepiandrosterone (DHEA).
The objectives of the studies presented in this thesis were to further examine the effects of selected OHPCBs on the activity of human hydroxysteroid sulfotransferase (hSULT2A1), to develop a three-dimensional quantitative structure activity relationship (3D-QSAR) model for OHPCBs as inhibitors of DHEA-sulfation catalyzed by this enzyme, and to investigate the mechanism of inhibition and binding of OHPCBs to hSULT2A1.
All 15 OHPCBs examined inhibited the sulfation of 1 μ M [3H] DHEA, catalyzed by hSULT2A1 with IC50 values ranging from 0.6 to 96 μ M. The OHPCBs with a 3, 5-dichloro-4-hydroxy substitution were the most potent inhibitors of DHEA sulfation, and they were also shown to be substrates for hSULT2A1. Eight OHPCBs were substrates for hSULT2A1, and seven were solely inhibitors (i.e. they inhibited the sulfation of DHEA, yet they were not themselves sulfuryl-acceptors in hSULT2A1-catalyzed reactions). A 3D-QSAR model was developed utilizing comparative molecular field analysis (CoMFA). The model fit the data well and also had good predictability.
The kinetics of inhibition showed that these OHPCBs were noncompetitive inhibitors of hSULT2A1. Binding studies utilizing the displacement of a fluorescent probe, 8-anilino-1-naphthalene sulfonic acid, revealed that several of the OHPCBs interact either at more than one binding site or with more than one enzyme conformation. Further exploration of this binding by molecular modeling showed that OHPCBs bind similarly to different conformations of the enzyme. This work has helped in our understanding of the roles of sulfotransferases in the metabolism and toxicities of OHPCBs, and it opens new avenues for future work.
|
157 |
Protein adducts and crosslinking by reactive metabolites of polychlorinated biphenyls (PCBs)Li, Miao 01 December 2015 (has links)
Polychlorinated biphenyls (PCBs) are the persistent environmental pollutants with the continuous concerns over adverse human health effects. As semi-volatile compounds, PCBs were found in indoor and outdoor air. The observation of high levels of airborne PCBs in old school buildings raised the concerns of inhalation exposure and toxicity of PCBs. Lower chlorinated PCBs (LC-PCBs), major components of airborne PCBs, are subject to biotranformation. In vitro and in vivo studies revealed that reactive metabolites of LC-PCBs formed covalent adducts on DNA and proteins. The hypothesis of the project is that the reactive metabolites of LC-PCBs are able to form adducts on proteins or even protein crosslinks, and the formation of protein adducts and crosslinks causes the dysfunction of the target proteins. In addition, the objectives of the project are also to identify protein targets by PCB metabolites, which may be related to the mechanism of toxicity of LC-PCBs. The alkaline permethylation (AP) was established and optimized to identify and measure the protein adducts from LC-PCB metabolites. The AP method evidenced PCB metabolites formed protein adducts through the sulfhydryl groups and also one molecule of PCB quinoid metabolites was able to bind to more than one protein. Application of cytochrome c as the model protein revealed PCB quinoid metabolites also formed adducts on lysine and glutamic acid. The adduct formation and crosslinks caused the dysfunction of cytochrome c. In addition, the quinone protein adducts still kept the ability for redox reactions, which may lead to unexpected toxicity. The SILAC method was applied to identify the target proteins in the samples of in vitro proteome incubation. The instability of PCB quinone protein adducts was found by further reaction of quinone protein adducts. This may be the reason why cysteine-PCB quinone adducts were not frequently identified by proteomics method. The further understanding of protein adducts by reactive PCB metabolites helps to identify the target proteins, and ultimately reveal the role of protein adducts impacting on human health.
|
158 |
Hydroxylated and sulfated metabolites of lower chlorinated PCBs bind with high affinity to human serum albumin and exhibit selective toxicity to neuronal cellsRodriguez, Eric Alberto 01 May 2016 (has links)
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that have been associated with a myriad of negative human health effects. These man-made compounds were used throughout most of the 20th century and although their intentional production has since been banned and their use limited to closed systems, their prevalence in the environment remains a factor in disease states for exposed populations. The worldwide levels of PCBs has been declining, however, there is evidence for renewed sources of these compounds. The presence of PCBs with lower numbers of chlorine atoms (LC-PCBs) have been verified as unintentional byproducts in paints and pigments, the decomposition of PCB waste, or the recycling or disposal attempts of PCB-laden materials. While exposure to the higher chlorinated congeners (HC-PCBs) is often attributed to the consumption of contaminated water or fatty animal meat, a significant route of exposure to the airborne LC-PCBs is through inhalation. These semi-volatile compounds have been detected in high quantities in both indoor and outdoor air in urban and rural communities, and their presence is pronounced in older buildings (e.g., homes and schools). When compared to HC-PCBs, LC-PCBs are more highly susceptible to metabolic transformations, and recently their sulfated metabolites have gained much interest. Although the sulfation of xenobiotics often is considered a route for their removal from the body, a previous study of Sprague-Dawley rats treated with 4-chlorobiphenyl (PCB 3) resulted in the substantial formation of sulfated metabolites (i.e., hydroxylation followed by sulfation of the LC-PCB). This metabolic route accounted for more than half of the treatment dose. Furthermore, LC-PCB sulfates have been shown to bind to the human serum protein, transthyretin, in vitro.
Of the health effects associated with PCB exposure, neurotoxicity has been well established through various laboratory and epidemiological studies. It is proposed that the dopaminergic system lies at the core of the observed cognitive, motor, and intellectual dysfunction observed in exposed populations, especially in children exposed perinatally. Interestingly, PCB exposure has been linked to Parkinson's disease (PD) etiology, which is marked by a substantial loss of dopaminergic neurons.
This thesis describes studies on the binding of selected LC-PCBs and their hydroxylated and sulfated metabolites to human serum albumin (HSA), the most abundant protein in human serum. The displacement of fluorescent probes, selective for the two major drug binding sites of HSA, indicates that LC-PCB sulfates generally bind to HSA with such affinity that is equal to or greater than that for the LC-PCBs or OH-LC-PCBs This work also included a study of the selective toxicity of these compounds to dopaminergic neuronal cells. The selective toxicity of these compounds was studied in a series of immortalized cell lines (i.e., two neuronal cell lines: the rat midbrain-derived N27 cell line, the human neuroblastoma-derived SH-SY5Y cell line, and the human liver-derived HepG2 cell line). The assessment of toxicity by MTT reduction and LDH release in these cellular models indicated that hydroxylated and sulfated metabolites of LC-PCBs exhibited toxicity that was selective to neuronal cells and, in most cases, selective for the dopaminergic neuronal cells. Furthermore, HPLC analysis of the distribution of the compounds from the extracellular medium into the cellular milieu indicated that the observed toxicity may be due in some cases to selective transport and further metabolism. This work contributes to understanding the neurotoxicity of LC-PCB hydroxylated and sulfated metabolites and the role that binding to serum proteins may play in it. Furthermore, it emphasizes the need for future studies on the effects that metabolism, particularly sulfation, may play in the disposition of LC-PCB congeners as it pertains to their metabolism, retention, and toxic effects.
|
159 |
Genetic analyses of microbial polychlorinated biphenyl degradation in natural and engineered systemsLiang, Yi 01 May 2013 (has links)
Polychlorinated biphenyls (PCBs) are carcinogenic, persistent, and bioaccumulative contaminants that pose risks to human and environmental health. PCB biodegradation by indigenous microbial communities could be a cost-effective and an environmental-friendly bioremediation strategy for in situ PCB removal. A comprehensive understanding of the microbial PCB degradation at the contaminated site is required for the acceptance and optimization of using microbial PCB degradation as the site clean-up strategy. This thesis describes investigations of the aerobic and anaerobic microbial degradation of PCBs under both field and laboratory conditions.
The microbial PCB degradation potential in sediments from Indiana Harbor and Ship Canal (IHSC), a site that was historically contaminated by PCBs, was explored by analyzing the PCB congener distributions and microbial communities in two core sediment samples. PCB congener analysis suggested the possibility of in situ dechlorination in deep sediments. Molecular analysis of biomarker genes revealed the potential of both aerobic and anaerobic PCB degradation in sediments. Microbial communities were characterized by the combination use of terminal restriction fragment length polymorphism (T-RFLP), clone library, and pyrosequencing. These methods elucidated the dominant role of Proteobacteria, especially Acidovorax and Acinetobacter in sediments.
To improve the microbial PCB degradation, phytoremediation with switchgrass (Panicum vigratum) was employed under laboratory conditions. Congener analysis showed that both phytoextraction and microbial PCB degradation contributed to the enhanced PCB removal in the presence of switchgrass. Bioaugmentation with Burkholderia xenovorans LB400 was performed to further promote aerobic PCB degradation. The presence of LB400 was associated with improved degradation of PCB 52, but not PCB77 or PCB 153. Increased abundance of the biphenyl dioxygenase gene, which is indicative of aerobic PCB degradation, and its transcript were observed after bioaugmentation, suggesting active aerobic PCB degradation.
To promote the anaerobic PCB degradation, redox cycling (alternating flooding and non-flooding) was performed. Redox cycling was found to improve the removal of PCB 153 in unplanted soils and to increase the dechlorinating Chloroflexi population. Characterization of the microbial community by T-RFLP and clone library revealed that Proteobacteria and Acidobacteria were dominant. Species that contain dechlorination potential were identified, including Geobacter and Clostridium, suggesting that their possible role in PCB dechlorination.
The research described in this thesis provides scientific knowledge and evidence for the feasibility of employing bioremediation including natural attenuation, phytoremediation, and bioaugmentation to clean up PCB contamination. Such information will be critical in selecting and optimizing remediation strategies for PCB contaminated sites.
|
160 |
Simultaneous mobilization of polychlorinated biphenyl compounds and heavy metals from a field contaminated soilEhsan, Sadia. January 2006 (has links)
No description available.
|
Page generated in 0.0839 seconds