11 |
Fast wave heating and current drive in tokamaksLaxåback, Martin January 2005 (has links)
This thesis concerns heating and current drive in tokamak plasmas using the fast magnetosonic wave in the ion cyclotron range of frequencies. Fast wave heating is a versatile heating method for thermonuclear fusion plasmas and can provide both ion and electron heating and non-inductive current drive. Predicting and interpreting realistic heating scenarios is however difficult due to the coupled evolution of the cyclotron resonant ion velocity distributions and the wave field. The SELFO code, which solves the coupled wave equation and Fokker-Planck equation for cyclotron resonant ion species in a self-consistent manner, has been upgraded to allow the study of more advanced fast wave heating and current drive scenarios in present day experiments and in preparation for the ITER tokamak. Theoretical and experimental studies related to fast wave heating and current drive with emphasis on fast ion effects are presented. Analysis of minority ion cyclotron current drive in ITER indicates that the use of a hydrogen minority rather than the proposed helium-3 minority results in substantially more efficient current drive. The parasitic losses of power to fusion born alpha particles and beam injected ions are concluded to be acceptably low. Experiments performed at the JET tokamak on polychromatic ion cyclotron resonance heating and on fast wave electron current drive are presented and analysed. Polychromatic heating is demonstrated to increase the bulk plasma ion to electron heating ratio, in line with theoretical expectations, but the fast wave electron current drive is found to be severely degraded by parasitic power losses outside of the plasma. A theoretical analysis of parasitic power losses at radio frequency antennas indicates that the losses can be significantly increased in scenarios with low wave damping and with narrow antenna spectra, such as in electron current drive scenarios. / QC 20100506
|
12 |
Etoile Laser Polychromatique pour l’Optique Adaptative : modélisation de bout-en-bout, concepts et étude des systèmes optiques / Polychromatic Laser Guide Star for Adaptive Optics : end-to-end model, concepts and study of optical systemsMeilard, Nicolas 18 July 2012 (has links)
L’étoile laser polychromatique (ELP) fournit la référence de phase à une optique adaptative (OA)pour corriger les surfaces d’onde turbulentes, y compris leur pente. L’ELP, générée dans la mésosphère parune excitation résonnante à deux photons du sodium, repose sur la déviation chromatique des images. Uneimagerie dans le visible devient possible, et est indispensable pour 80% des programmes astrophysiquesprioritaires de l'E-ELT.L’ELP requiert un écart-type des mesures de position 26 fois inférieur au cas classique. Cela m’a amené àétudier le projecteur laser interférométrique. J’ai mis au point un correcteur de base polychromatique pourégaliser la période des franges et un correcteur de phase pour compenser la réfraction atmosphérique. J’aiétudié l'optique de mesure des franges, et de séparation entre l'ELP et l’objet observé.La précision requise m’a conduit à étudier dans quelles conditions l’algorithme du maximum devraisemblance tend vers la borne de Cramér-Rao.J’ai également développé un modèle numérique de bout en bout pour simuler l’ELP depuis les lasersjusqu’à la mesure du rapport de Strehl. Je montre que pour un VLT, les rapports de Strehl sont supérieurs à40% à 500 nm sans étoile de référence, en prenant une OA qui aurait donné 50% instantané (Strehl depente : 80%). Une approche analytique valide ces résultats.Enfin, j’aborde l’application de l’ELP aux télécommunications interplanétaires et à la destruction des débrisorbitaux. / The polychromatic laser guide star (PLGS) provides adaptive optics (AO) with a phase referenceto correct corrugated wavefronts, including tip tilt. It relies on the chromatic dispersion of light returnedfrom the 2-photon resonant excitation of sodium in the mesosphere. Diffraction limited imaging in thevisible then becomes possible. This is mandatory for 80% of the prominent astrophysical cases for the EELT.A PLGS requires standard deviations of position measurements 26 times less than in classical cases. Thus Ihave studied the interferometric laser projector. I have designed a polychromatic base corrector to equalizethe fringe periods, a phase corrector to compensate atmospheric refraction and the optics for fringemeasurements and for keeping apart the PLGS from the science target images.The required accuracy leads me to study how the maximum likelihood algorithm approaches the Cramer-Rao bound.I have written an end-to-end code for numerical simulations of the PLGS, from the lasers to the Strehlmeasurement. I get for the VLT Strehl ratios larger than 40% at 500 nm if one uses an AO providing us a50% instantaneous Strehl (tip tilt Strehl : 80%). An analytical model validates these results.Finally I address the application of the PLGS to deep space communications and to space debris clearing.
|
Page generated in 0.0545 seconds