31 |
Development of high shrinkage Polyethylene Terephthalate (PET) shape memory polymer tendons for concrete crack closureTeall, O.R., Pilegis, M., Sweeney, John, Gough, Tim, Thompson, Glen P., Jefferson, A., Lark, R., Gardner, D. 01 February 2017 (has links)
Yes / The shrinkage force exerted by restrained shape memory polymers can potentially be used
to close cracks in structural concrete. This paper describes the physical processing and
experimental work undertaken to develop high shrinkage die-drawn Polyethylene
Terephthalate (PET) shape memory polymer tendons for use within a crack closure system.
The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples
is described. The results from a set of restrained shrinkage tests, undertaken at differing
activation temperatures, are also presented along with the mechanical properties of the most
promising samples.
The stress developed within the tendons is found to be related to the activation temperature,
the cross-sectional area and to the draw rate used during manufacture. Comparisons with
commercially-available PET strip samples used in previous research are made, demonstrating
an increase in restrained shrinkage stress by a factor of two for manufactured PET filament
samples. / Thanks must go to the EPSRC for their funding of the Materials for Life (M4L) project (EP/K026631/1) and to Costain Group PLC. for their industrial sponsorship of the project and author.
|
32 |
Polyethylene terephthalate/clay nanocomposites : compounding, fabrication and characterisation of the thermal, rheological, barrier and mechanical properties of polyethylene terephthalate/clay nanocompositesAl-Fouzan, Abdulrahman M. January 2011 (has links)
Polyethylene Terephthalate (PET) is one of the most important polymers in use today for packaging due to its outstanding properties. The usage of PET has grown at the highest rate compared with other plastic packaging over the last 20 years, and it is anticipated that the increase in global demand will be around 6% in the 2010-2015 period. The rheological behaviour, thermal properties, tensile modulus, permeability properties and degradation phenomena of PET/clay nanocomposites have been investigated in this project. An overall, important finding is that incorporation of nanoclays in PET gives rise to improvements in several key process and product parameters together - processability/ reduced process energy, thermal properties, barrier properties and stiffness. The PET pellets have been compounded with carefully selected nanoclays (Somasif MAE, Somasif MTE and Cloisite 25A) via twin screw extrusion to produce PET/clay nanocomposites at various weight fractions of nanoclay (1, 3, 5, 20 wt.%). The nanoclays vary in the aspect ratio of the platelets, surfactant and/or gallery spacing so different effect are to be expected. The materials were carefully prepared prior to processing in terms of sufficient drying and re-crystallisation of the amorphous pellets as well as the use of dual motor feeders for feeding the materials to the extruder. The rheological properties of PET melts have been found to be enhanced by decreasing the viscosity of the PET i.e. increasing the 'flowability' of the PET melt during the injection or/and extrusion processes. The apparent shear viscosity of PETNCs is show to be significantly lower than un-filled PET at high shear rates. The viscosity exhibits shear thinning behaviour which can be explained by two mechanisms which can occur simultaneously. The first mechanism proposed is that some polymer has entangled and few oriented molecular chain at rest and when applying high shear rates, the level of entanglements is reduced and the molecular chains tend to orient with the flow direction. The other mechanism is that the nanoparticles align with the flow direction at high shear rates. At low shear rate, the magnitudes of the shear viscosity are dependent on the nanoclay concentrations and processing shear rate. Increasing nanoclay concentration leads to increases in shear viscosity. The viscosity was observed to deviate from Newtonian behaviour and exhibited shear thinning at a 3 wt.% concentration. It is possible that the formation of aggregates of clay is responsible for an increase in shear viscosity. Reducing the shear viscosity has positive benefits for downstream manufacturers by reducing power consumption. It was observed that all ii three nanoclays used in this project act as nucleation agents for crystallisation by increasing the crystallisation temperature from the melt and decreasing the crystallisation temperature from the solid and increasing the crystallisation rate, while retaining the melt temperature and glass transition temperatures without significant change. This enhancement in the thermal properties leads to a decrease in the required cycle time for manufacturing processes thus potentially reducing operational costs and increasing production output. It was observed that the nanoclay significantly enhanced the barrier properties of the PET film by up to 50% this potentially allows new PET packaging applications for longer shelf lives or high gas pressures. PET final products require high stiffness whether for carbonated soft drinks or rough handling during distribution. The PET/Somasif nanocomposites exhibit an increase in the tensile modulus of PET nanocomposite films by up to 125% which can be attributed to many reasons including the good dispersion of these clays within the PET matrix as shown by TEM images as well as the good compatibility between the PET chains and the Somasif clays. The tensile test results for the PET/clay nanocomposites micro-moulded samples shows that the injection speed is crucial factor affecting the mechanical properties of polymer injection moulded products.
|
33 |
Optimization of a waste polyethylene terephthalate/fly ash hybrid concrete composite in slabsNkomo, Nkosilathi Zinti 08 1900 (has links)
D. Tech. (Department of Mechanical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / Cracked concrete slabs are a problem due to several factors such as poor maintenance, insufficient reinforcement or steel corrosion leading to crack propagation. There is a need to increase the load-bearing capacity of concrete slabs and increase their life span. The use of waste Polyethylene Terephthalate (PET) fibres and fly ash in a hybrid composite slab dramatically alleviates the problem of crack propagation and failure sustainably. This study aimed to optimize a waste PET fibre/fly ash hybrid cement composite for use in slabs. This study characterized the raw materials used, including fly ash and aggregates. After that, concrete test specimens were fabricated using the PET fibres and fly ash following the full factorial experimental design. The developed specimens were then tested to ascertain their material strength properties. Model development was carried out using Minitab Software Version 14, and subsequent experimental validation was carried out. After that, the PET and fly ash optimisation for maximum favourable response outcome was carried out.
The fly ash was found to belong to the Class F category with particle size ranging from 0.31 μm to 800 μm. The fly ash was mainly spherical and consisted of Ca, Al, P, Si, and trace amounts of Ti and Mg. The spherical shape of the fly ash helped improve the concrete's workability. The river sand had a fineness modulus of 3.69, considered coarse sand. The fine aggregate showed uniform particle size distribution with a uniformity coefficient of 4.007. The coarse aggregate characterisation was carried out and revealed that the aggregate particle size was 13 mm in size. The coarse aggregate had a uniformity coefficient of 4.007, which implied the aggregate was well graded. The coarse aggregate had a high flakiness index of 74.82 % and an acceptable elongation index of 46.72 %.
Full factorial methodology experimental design was employed to fabricate the test specimens by simultaneously varying the independent factors to develop a model for overall response variation. The slump value was observed to increase with the addition of fly ash. However, the addition of PET fibre decreased the slump value with incremental amounts of fibre. The combined effect of fibre addition and fly ash showed a general decreasing slump value for all quantities of fly ash content. The compressive strength of PET fibre only composite had maximum strength at 0.5% fibre addition, and the composite with fly ash alone had the maximum compressive strength at 15%. The combined optimum compressive strength for fibre and fly ash was at 0.5 % and 15 %, respectively, with a 15.54 N/mm2. The split tensile strength decreased with an increase in fibre content. However, the fibre provided crack retardation. Fly ash increased the split tensile strength significantly to a peak of 2.35 N/mm2 for 20 % fly ash addition. The combined addition of fibre and fly ash had an optimum split tensile strength of 2.79 N/mm2 at 0.5 % fibre and 20 % fly ash. The addition of fibre had an optimum split tensile strength at 0.5% of 1.82 N/mm2. The fly ash increased the flexural strength, with optimum strength at 15 %. The combined addition of fibre and fly ash created optimum flexural strength at 0.5% and 30 %, respectively. The trend observed by the rebound number followed that of the compressive strength. However, the non-destructive rebound hammer method gave significantly lower strength values than the destructive test method. The addition of fly ash had the effect of lowering the cost of producing the slab. However, the addition of fibres marginally increased the cost. The combined effect of fibre and fly ash resulted in a significant cost saving.
Numerical optimisation was carried out concerning the fibre reinforced concrete's fresh and hardened mechanical properties. Predictive modified quadratic equations were developed for slump value, compressive, flexural, split tensile strength and total cost. Analysis of variance test carried out for all the responses indicated that the model could predict the slump value and mechanical properties of the fibre reinforced concrete correctly and effectively with a coefficient of determination in the range of 0.4151 to 0.9467. The developed model can predict the required fibre reinforced fresh and hardened properties in order to assist in decision making in construction in slabs. The optimum constituent combination for maximum mechanical strength at the lowest possible cost was found to be 15.7576 % Fly ash and 0.3232 % PET fibre with optimum responses as shown in Table 4-26. These predictions were validated experimentally, and a good correlation was observed between the actual and predicted values based on the observed standard deviations of 0.1335, 0.031, 0.005, 0.676, 0.02 for compressive strength, flexural strength, tensile strength, slump value and cost, respectively. Concrete slabs were optimised for various possible end uses, and the optimum PET fibre % and fly ash % were ascertained as shown in Table 4-27.
|
34 |
Polyethylene Terephthalate / clay nanocomposites. Compounding, fabrication and characterisation of the thermal, rheological, barrier and mechanical properties of Polyethylene Terephthalate / clay nanocomposites.Al-Fouzan, Abdulrahman M. January 2011 (has links)
Polyethylene Terephthalate (PET) is one of the most important polymers in use today for packaging due to its outstanding properties. The usage of PET has grown at the highest rate compared with other plastic packaging over the last 20 years, and it is anticipated that the increase in global demand will be around 6% in the 2010 ¿ 2015 period.
The rheological behaviour, thermal properties, tensile modulus, permeability properties and degradation phenomena of PET/clay nanocomposites have been investigated in this project. An overall, important finding is that incorporation of nanoclays in PET gives rise to improvements in several key process and product parameters together ¿ processability/ reduced process energy, thermal properties, barrier properties and stiffness. The PET pellets have been compounded with carefully selected nanoclays (Somasif MAE, Somasif MTE and Cloisite 25A) via twin screw extrusion to produce PET/clay nanocomposites at various weight fractions of nanoclay (1, 3, 5, 20 wt.%). The nanoclays vary in the aspect ratio of the platelets, surfactant and/or gallery spacing so different effect are to be expected. The materials were carefully prepared prior to processing in terms of sufficient drying and re-crystallisation of the amorphous pellets as well as the use of dual motor feeders for feeding the materials to the extruder.
The rheological properties of PET melts have been found to be enhanced by decreasing the viscosity of the PET i.e. increasing the ¿flowability¿ of the PET melt during the injection or/and extrusion processes. The apparent shear viscosity of PETNCs is show to be significantly lower than un-filled PET at high shear rates. The viscosity exhibits shear thinning behaviour which can be explained by two mechanisms which can occur simultaneously. The first mechanism proposed is that some polymer has entangled and few oriented molecular chain at rest and when applying high shear rates, the level of entanglements is reduced and the molecular chains tend to orient with the flow direction. The other mechanism is that the nanoparticles align with the flow direction at high shear rates. At low shear rate, the magnitudes of the shear viscosity are dependent on the nanoclay concentrations and processing shear rate. Increasing nanoclay concentration leads to increases in shear viscosity. The viscosity was observed to deviate from Newtonian behaviour and exhibited shear thinning at a 3 wt.% concentration. It is possible that the formation of aggregates of clay is responsible for an increase in shear viscosity. Reducing the shear viscosity has positive benefits for downstream manufacturers by reducing power consumption. It was observed that all
ii
three nanoclays used in this project act as nucleation agents for crystallisation by increasing the crystallisation temperature from the melt and decreasing the crystallisation temperature from the solid and increasing the crystallisation rate, while retaining the melt temperature and glass transition temperatures without significant change. This enhancement in the thermal properties leads to a decrease in the required cycle time for manufacturing processes thus potentially reducing operational costs and increasing production output.
It was observed that the nanoclay significantly enhanced the barrier properties of the PET film by up to 50% this potentially allows new PET packaging applications for longer shelf lives or high gas pressures.
PET final products require high stiffness whether for carbonated soft drinks or rough handling during distribution. The PET/Somasif nanocomposites exhibit an increase in the tensile modulus of PET nanocomposite films by up to 125% which can be attributed to many reasons including the good dispersion of these clays within the PET matrix as shown by TEM images as well as the good compatibility between the PET chains and the Somasif clays. The tensile test results for the PET/clay nanocomposites micro-moulded samples shows that the injection speed is crucial factor affecting the mechanical properties of polymer injection moulded products.
|
35 |
Design of New Polyester Architectures through Copolymerization, Crosslinking, and Diels-Alder GraftingVargas, Marian 12 April 2004 (has links)
The compound 2,6-anthracenedicarboxylic acid is used as a comonomer for the synthesis of poly(ethylene terephthalate). The resulting copolymers are characterized and further functionalized by Diels-Alder grafting or crosslinking through the anthracenate unit. Diels-Alder reaction is used to graft small molecules and oligomers endcapped with maleimide as dienophiles on to poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate),PET-co-A. Maleimide-capped poly(ethylene glycol) is grafted onto PET-co-A to improved its hydrophilicity.
2,6-Anthracenedicarboxylic acid is also incorporated into the known liquid crystalline polymer, LCP, poly(4-oxybenzoate-co-1,4-phenylene isophthalate), HIQ40. The resulting copolymer, poly(4-oxybenzoate-co-1,4-phenylene isophthalate-co-2,6-phenylene anthracenate), HIQ40-co-A, shows LCP behavior. These HIQ40-co-A copolymers are grafted with maleimide end-capped monomers and polymers andcrosslinked with bismaleimides through a Diels-Alder mechanism.
|
36 |
Multi-component Transport of Gases and Vapors in Poly(ethylene terephthalate)Chandra, Preeti 10 November 2006 (has links)
Transport of amorphous and semi-crystalline, oriented, annealed and non-annealed PET films has been studied using pure and mixed gas/vapor feeds to understand the influence of flavor molecules on the efficacy of the barrier material. Methanol has been used as the flavor molecule simulant, and pure methanol vapor sorption studies show swelling and relaxation effects in the polymer. Multi-component transport of O2/methanol and O2/CO¬2/methanol mixtures, performed at different activities of methanol, shows that vapor induced plasticization leads to increases in O2 and CO2 permeability. Annealed, semi-crystalline PET is shown to be most resistant to plasticization effects. It has been shown that the non-annealed film is less stable despite similar crystallinity as the annealed film due to the presence of orientation related stress in the material. Presence of crystals also restricts the chain motion, and helps suppress the plasticization effects. The results have been compared with the predictions of the dual mode model for multi-component mixtures. Plasticization effects at the high activities have been analyzed within the framework of the free volume theory. It has been proposed that only the densified domains of a glassy polymer be considered when evaluating fractional free volume change due to swelling in the polymer-penetrant system. The free volume parameter- BA has been evaluated for O2 and CO2 in PET and is found to be different from that for other high permeability polymers.
|
37 |
Effects of Thickness on the Thermal Expansion Coefficient of ITO/PET FilmSu, Fang-I 15 August 2011 (has links)
In this studing, application of the digital image correlation method (DIC) for determining the coefficient of thermal expansion (CTE) of
Indium Tin Oxide/Polyethylene Terephthalate(ITO/PET) thin film/flexible
substrate was proposed and the effects of thinkness variations of ITO and
PET, respectively, on the CTE of the specimens was disscussed. The
observation range of experimental temperature was chosen from room
temperature to the glass transfer temperature of PET, 70¢J. A novel DIC
experimental process for reducing the errors caused from the variations of
the refractive index of the surrounding heated air was proposed.
As a result, the experimental error of CTE measurement was reduced form
10~17% to less than 5%. The experimental results showed that the CTE of
ITO/PET specimen is anisotropic. Futhermore, the CTE of an ITO/PET
specimen will be increased by decreasing the thinkness of PET flexible
substrate, and increased by increasing the thinkness of ITO film - which
means decreasing the surface resistance of ITO film.
|
38 |
Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM).Grant, Colin, A., Alfouzan, Abdulrahman, Twigg, Peter C., Coates, Philip D., Gough, Timothy D. 2012 June 1920 (has links)
Visco-elastic behaviour at the nano-level of a commonly used polymer (PET) is characterised using atomic force microscopy (AFM) at a range of temperatures. The modulus, indentation creep and relaxation time of the PET film (thickness = 100 m) is highly sensitive to temperature over an experimental temperature range of 22¿175 ¿C. The analysis showed a 40-fold increase in the amount of indentation creep on raising the temperature from 22 ¿C to 100 ¿C, with the most rapid rise occurring above the glass-to-rubber transition temperature (Tg = 77.1 ¿C). At higher temperatures, close to the crystallisation temperature (Tc = 134.7 ¿C), the indentation creep reduced to levels similar to those at temperatures below Tg. The calculated relaxation time showed a similar temperature dependence, rising from 0.6 s below Tg to 1.2 s between Tg and Tc and falling back to 0.6 s above Tc. Whereas, the recorded modulus of the thick polymer film decreases above Tg, subsequently increasing near Tc. These visco-elastic parameters are obtained via mechanical modelling of the creep curves and are correlated to the thermal phase changes that occur in PET, as revealed by differential scanning calorimetry (DSC).
|
39 |
Novel tissue scaffolds comprising nano- and micro-structuresNg, Robin, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 208-232).
|
40 |
Resistência ao cisalhamento de solos com fibras de politereftalato de etileno reciclado / Shear strength of soils with polyethylene terephthalate recycled fibersCastilho, Tayane Westermann Lopes 18 December 2017 (has links)
Submitted by TAYANE WESTERMANN LOPES CASTILHO null (tayanewest@uol.com.br) on 2018-01-26T16:12:01Z
No. of bitstreams: 1
Dissertação Tayane Westermann Lopes Castilho.pdf: 4997047 bytes, checksum: c0457ac97bc5e87fd929dbe70703dd0d (MD5) / Approved for entry into archive by Maria Marlene Zaniboni null (zaniboni@bauru.unesp.br) on 2018-01-26T18:07:08Z (GMT) No. of bitstreams: 1
castilho_twl_me_bauru.pdf: 4997047 bytes, checksum: c0457ac97bc5e87fd929dbe70703dd0d (MD5) / Made available in DSpace on 2018-01-26T18:07:08Z (GMT). No. of bitstreams: 1
castilho_twl_me_bauru.pdf: 4997047 bytes, checksum: c0457ac97bc5e87fd929dbe70703dd0d (MD5)
Previous issue date: 2017-12-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho avaliou a influência da inclusão de fibras recicladas extraídas de garrafas constituídas de politereftalato de etileno (PET) na resistência ao cisalhamento de solos arenoso e argiloso. Por meio de ensaios de compressão simples das amostras dos solos e misturas desses com diferentes teores e comprimentos de fibras, obteve-se que a combinação de 1,5% de fibras, em relação à massa de solo seco, com comprimento de 20 mm levou a um aumento de 92,8% na resistência não confinada para a amostra de solo arenoso, e de 10,5% para a de solo argiloso. Ensaios de cisalhamento direto foram realizados com essa dosagem, em duas diferentes condições de compactação, e revelam o ganho de 66,4% no intercepto de coesão para o solo arenoso com grau de compactação de 100%, e de 55,5% com grau de compactação de 95%, em relação ao solo sem fibra. Enquanto os ângulos de atrito interno praticamente não se alteraram. A mesma dosagem para o solo argiloso promoveu reduções de coesão de 7,6% e 5,4%, respectivamente, para os graus de compactação de 100% e de 95% e aumentos relativos de 2,9% e 7,3% no ângulo de atrito interno. Esses resultados aplicados em dois casos hipotéticos, capacidade de carga de fundações em sapatas e estabilidade de taludes de aterros, demonstram o efeito da inclusão de fibras na melhoria da estimativa da capacidade de carga para ambos os solos e o aumento do fator de segurança para o solo arenoso. O trabalho oferece uma alternativa tecnicamente viável para a melhoria dos solos e que prioriza o reuso de garrafas PET, colaborando para preservação ambiental, mas não só, pois a atividade promove ainda benefícios sociais e econômicos. / This study presents an analysis of the influence of the inclusion of polyethylene terephthalate (PET) fibers, extracted from waste plastic bottles, in the shear strength of sandy and clayey soils. Simple compression tests were performed with soil samples and mixtures of these with different fiber contents and lengths. The combination of 1,5% of fibers in relation to the dry soil mass with a length of 20 mm led to a 92.8% increase in the unconfined resistance for the sandy soil sample and 10.5% for the clayey soil sample. Direct shear tests were carried out with this dosage, with two different compaction conditions, showing the gain of 66.4% in the cohesion intercept for sandy soil with 100% compaction degree, and 55.5% with the degree of 95%, in relation to the soil without fiber. While the angles of internal friction remained almost constant. The same dosage for clayey soil promoted cohesion reductions of 7.6% and 5.4%, respectively, for compaction degrees of 100% and 95% and relative increases of 2.9% and 7.3% in the angle of internal friction. These results, applied in two hypothetical cases, load capacity of an isolated footing foundation and slope stability of landfills, demonstrate the effect of the inclusion of fibers in improving the estimation of the load capacity for both soils and the increase of the safety factor for the sandy soil. The study offers a technically feasible alternative for the improvement of soils, and that prioritizes the reuse of PET bottles, collaborating for environmental preservation, but not only, since the activity also promotes social and economic benefits.
|
Page generated in 0.1183 seconds