• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dilute solution molecular characterization and drag reducation studies of high molecular weight polyethylene oxide

Jones, Brian Dion 13 December 2001 (has links)
The molecular weight distributions of two high molecular weight (M[subscript w]>>1 million) polyethylene polymers, WSR-308 and WSR-301, were characterized with gel permeation chromatography (GPC) coupled with a multi-angle laser light scattering detector (MALLS). The M[subscript w] of the WSR-308 was found to be 5.10x10⁶ g/mol with a molecular weight range from about 1 million g/mol to as high as 10 million g/mol. The M[subscript w] of the WSR-301 was found to be 3.16x10⁶ g/mol with the lowest molecular weight about 400,000 g/mol while the highest molecular weight component may have been as high as 8 million g/mol. Attempts to measure the M[subscript w] of the two polymers using static light scattering (SLS) techniques proved to be difficult. In conjunction with these studies, drag reduction and shear degradation studies of the two polymers in water were also conducted. Solutions of the two polymers, ranging from 1 to 10 ppm including mixtures of the two, were tested in a pipe-flow apparatus to obtain friction factor and %DR data. In every case, the greater the concentration and/or the molecular weight of the polymer, the greater the drag reduction effects. Additionally, the higher molecular weight polymer and mixtures with a greater weight percentage of the higher molecular weight polymer were found to shear degrade less quickly than otherwise. A unique point along the maximum drag reduction asymptote (MDA) termed the "divergence point" was a focus of this study and an energy model based on frictional losses correlates well to the data. The correlation developed here relates the difference in frictional losses between the solvent by itself and the polymer solution directly to the mass concentration and molecular weight of the polymer. This frictional difference was proportional to the product of the mass concentration and molecular weight where both quantities were to approximately the first power. / Graduation date: 2002
12

Molecular Dynamics Simulation of Polyethylene Oxide Containing Li6-(V10O28) Salt

Tang, Ming-Shiuan 25 August 2008 (has links)
none
13

A surface forces and protein adsorption study of grafted PEO layers

Hamilton-Brown, Paul, Optometry & Vision Science, Faculty of Science, UNSW January 2006 (has links)
A combination of surface analytical techniques, colloid probe Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) was used to optimise the grafting density of covalently attached 5, 20 and 40 kDa methoxy-terminated PEO layers (under marginal solvation (cloud point) conditions for the PEO molecules). The combination of these techniques allowed us to relate the PEO layer density and molecular conformations to the range, magnitude and types of forces generated by coatings of various grafting densities. The key optimisation parameter was the grafting time with the concentration of PEO in solution having a weaker effect. Oxidation of the substrate occurred, but did not significantly limit the surface density of the functional groups used to chemically attach the PEO molecules. Interactions between the substrate and silica were electrostatic in origin and did not contribute to the interaction between silica and the PEO surfaces due to salt screening effects Surfaces with dense, highly stretched PEO layers (brushes) generated purely repulsive forces at all separation distances, arising from compression by the silica spherical probe used. The force profiles for lower density surfaces comprised long-ranged attractive and short-ranged repulsive forces. The attractive forces were most likely due to attractive bridging interactions between the PEO chains and the SiO2 surface. For low grafting densities, i.e. inter-chain grafting distances, s &gt ??RF, the PEO layers were not strongly stretched and free to adsorb onto the opposing silica surface. XPS analysis demonstrated that HSA and Fibrinogen adsorbed onto low density 20 kDa PEO coatings (s &gt ??RF), most likely via diffusion through the PEO layer. No protein adsorption was found (detection limit &gt 10 ng/cm2) on high density, ???strongly stretched brush??? coatings (s &lt ?? RF). Analysis of data from the more sensitive Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) techniques indicated that low amounts of adsorbed HSA, lactoferrin, lysozyme, and IgG were present on high density 20 and 40 kDa surfaces; the most likely explanation being attractive interactions between the proteins and the PEO layers during the protein adsorption experiments. ToF-SIMS data obtained for the strongly stretched (s &lt ?? RF) 5 kDa PEO surfaces suggested that no protein was adsorbed, in line with the XPS data for the same surfaces.
14

Protein adsorption to chemisorbed polyethylene oxide thin films

Unsworth, Larry David. Brash, J.L. January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: L. L. Brash and H. Sheardown. Includes bibliographical references.
15

Protein adsorption to chemisorbed polyethylene oxide thin films

Unsworth, Larry David. Brash, J.L. January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: L. L. Brash and H. Sheardown. Includes bibliographical references.
16

Controlling protein-silicone interactions by the modification of silicone elastomers with poly(ethylene oxide) /

Ragheb, Amro M. Brook, Michael A., January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: Michael A. Brook. Includes bibliographical references. Also available online.
17

Solution behaviour of polyethylene oxide, nonionic gemini surfactants /

Fitzgerald, Paul A. January 2002 (has links)
Thesis (Ph. D.)--School of Chemistry, Faculty of Science, University of Sydney, 2003. / Bibliography: leaves 117-121.
18

Solution behaviour of polyethylene oxide, nonionic gemini surfactants

Fitzgerald, Paul A. January 2002 (has links)
Thesis (Ph. D.)--University of Sydney, 2003. / Title from title screen (viewed Apr. 28, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Chemistry, Faculty of Science. Degree awarded 2003; thesis submitted 2002. Includes bibliography. Also available in print form.
19

Applications of theoretical chemistry : effective Hamiltonian studies of CaOH and implicit solvent simulations of poly(ethylene oxide) /

Taylor, Caroline Margaret. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Chemistry, Mar. 2003. / Includes bibliographical references (p. 113-119). Also available on the Internet.
20

The application of polyethylene oxide (PolyOx®) and methoxypolyethylene glycol (Carbowax Sentry®) in the production of extruded-spheronized beads with a high drug load

Howard, Matthew A. Neau, Steven H. January 2004 (has links)
Thesis (Ph. D.)--School of Pharmacy and Dept. of Chemistry. University of Missouri--Kansas City, 2004. / "A dissertation in pharmaceutical sciences and chemistry." Advisor: Steven H. Neau. Typescript. Vita. Description based on contents viewed Feb. 24, 2006; title from "catalog record" of the print edition. Includes bibliographical references (leaves 129-141). Online version of the print edition.

Page generated in 0.1088 seconds