• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthesis and evaluation of PEO-coated materials for microchannel-based hemodialysis

Heintz, Keely 01 August 2012 (has links)
The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work, stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polycarbonate microchannel and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. These coatings were evaluated in relation to protein repulsion, impact on urea permeability through the membrane, and impact on bubble retention through single-channel test articles. PEO layers were prepared by radiolytic grafting of PEO-PBD-PEO (PBD = polybutadiene) triblock copolymers to microchannel and membrane materials. Protein adsorption was detected by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with ��-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and polydimethyl siloxane (PDMS) materials by 80% when compared to the level recorded on uncoated materials. Protein adsorption on membrane materials was not decreased with PEO-PBD-PEO treatment; a PEI (polyethylene imide) layer exists on the AN69 ST membrane which is intended to trap heparin during membrane pre-treatment. It is still unclear how this PEI layer interacts with PEO-PBD-PEO. Neither the PEO-PBD-PEO triblocks nor the irradiation process was observed to have any effect on polyacrylonitrile membrane permeability to urea, nor did the presence of additional fibrinogen and bovine serum albumin (BSA) in the urea filtrate. The PEO-PBD-PEO treatment was not able to visibly reduce bubble retention during flow through single-channel polycarbonate test articles, however, the rough surfaces of the laser-etched polycarbonate microchannels may be causing this bubble retention. This surface treatment holds promise as a means for imparting safe, efficacious coatings to blood processing equipment that ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer. / Graduation date: 2013
32

Molecular simulations to study thermodynamics of polyethylene oxide solutions

January 2014 (has links)
Polyethylene oxide polymers are intrinsic to oil spill dispersants used in Macondo well blowout of 2010. We believe that effective thermo-physical modeling of these materials should assist the application of lab-scale results into ocean-scales. Fully defensible molecular scale theory of such materials will be challenging. This thesis is the first step towards that challenge. Molecular dynamics simulations are useful in generating structural and phase behavior data for these versatile polymers. Microstructures of PEO polymers, hydrophobic interactions, direct numerical test of controversial Pratt-Chandler theory, concentration dependence of Flory-Huggins interaction parameter and neutron scattering experiments will be discussed. / acase@tulane.edu
33

Hybrid Macrocycles for Supramolecular Assemblies

Watson, Walter Philip 27 April 2005 (has links)
Hybrid macrocycles, which chimerically integrate multiple chemical compositions and architectures, provide an effective way to impart new properties to polymers that are not found in their linear or homocyclic analogues. This dissertation addresses the incorporation of hydrophilic blocks into hydrophobic polymer, as either a poly(dimethyl siloxane)-block-poly(oxyethylene) (PDMS-POE) tadpole with a hydrophobic head and a hydrophilic tail or as a diblock poly(styrene)-block-diethylene glycol (PS-DEG) hydrophobic-hydrophilic macrocycle. The supramolecular association properties of both kinds of cycles were studied: the PDMS-POE tadpoles in forming micelles, and the PS-DEG macrocycles in threading with linear polymer to form polyrotaxanes. For the PDMS-POE macrocycle, linear alpha,omega-dihydroxy PDMS was cyclized under dilute conditions with dichloromethylhydrosilane as a linking group to produce hydrosilane-functionalized cyclic PDMS. This was joined to alpha-methoxy,omega-allyl POE via a free radical hydrosilylation reaction to produce the hybrid tadpole macrocycle, which was analyzed by GPC, DSC, and 1H, 13C, and 29Si NMR spectroscopy. Supramolecular aggregation consisting of the formation of micelles under both polar and nonpolar conditions was studied by surface tensiometry and quasielastic light scattering. For the PS-DEG macrocycle, linear alpha,omega-dihydroxy PS was prepared by ATRP polymerization of styrene, followed by reaction with KOH to give hydroxyl endgroups. The linear PS was then cyclized under dilute conditions with diethylene glycol ditosylate, and the product was analyzed by GPC, MALDI-TOF MS, DSC, and 1H, 13C and DOSY NMR spectroscopy. The macrocycle was then statistically threaded with linear PS to give the supramolecular structure poly(styrene)-rotaxa-cyclo[poly(styrene)-block-diethylene glycol]. Characterization was performed with DOSY NMR to verify that the product was threaded, and 1H NMR was collected to determine that the product was 13% macrocycle by weight. DSC showed only one Tg, indicating that the linear and cyclic species were present in the same phase.
34

Drop-on-demand inkjet drop formation of dilute polymer solutions

Yan, Xuejia 25 August 2010 (has links)
The research discussed in this dissertation was conducted to understand drop formation of inkjet printing with inks containing polymer. Solutions containing a water soluble polymer, poly ethylene oxide (PEO), with different molecular weights and polydispersities were used as inks. A flash photographic technique was used to visualize the whole process of DOD drop formation of dilute polymer solutions. The effects of driving signal, frequency and liquid properties on drop speed, drop size, breakup time and the formation of satellites were studied in detail. The addition of PEO increases the shear viscosity at all molecular weights, but the change is small for dilute solutions. However, the addition of a small amount of PEO can have a significant effect on the DOD drop formation process, increasing breakup time, decreasing primary drop speed and decreasing the number of satellites in some cases. The effects depend on both molecular weight and concentration. At lower molecular weights (14k and 35k g/mol), the effect of PEO was small when the drop formation process for the dilute solution was compared with that of a Newtonian liquid having similar shear viscosity, and the effect of PEO was small even at concentrations large enough that the solution does not fall in the dilute regime. As molecular weight is increased, the effects of PEO on DOD drop formation increase significantly, and the effects of concentration become important. These effects are explained by the fluid elasticity which increases with increasing in molecular weight and concentration. When the liquid jets out of the nozzle, the polymer chains are stretched, and thus depart from their ideal coiled state. As a result, an elastic stress develops in the liquid column and resists capillarity-driven pinch off from the nozzle and is responsible for the decrease in drop speed and longer breakup time. DOD drop formation data were shown to correlate closely with effective relaxation time, proposed by Tirtaatmadja based on Rouse-Zimm theory. When driving voltage amplitude is 44.2 V, two important parameters (breakup time and primary drop speed) in DOD drop formation for solutions containing monodispersed PEO and aqueous solutions containing mixtures of monodispersed PEO were closely predicted by correlation equations involving effective relaxation time . A mixture rule was developed to calculate the relaxation time for mixtures of monodispersed PEO. However, for polydispersed PEO, effective relaxation time was based on viscous molecular weight since the molecular weight distributions of the polydispersed PEO were unknown. When breakup time was plotted versus effective relaxation time for 1000k g/mol PEO, the data did not lie on the same line as that for the 100k and 300k g/mol PEO. This is believed to be due to the molecular weight distributions of the polydispersed PEO. When more than one species are present, viscous average molecular weight does not adequately account for the long chain species making up the polymer sample. DOD drop formation dynamics is highly affected by the actuating waveform, including the driving voltage, waveform shape, and frequency. The effects of parameters (jetting frequency, voltage amplitude and the shape of waveform) characterizing the signal were investigated. The open time and first drop problem were also studied. Research in this dissertation gives a better understanding of DOD drop formation process of polymer solutions, which may lead to improvement of inkjet printing quality for a variety of industry inks and polymer micro scale deposition and patterning in large areas.
35

Development of Continuous Bio-composite Fibres

Awal, Md. Abdul 19 June 2014 (has links)
The purpose of this research work was to develop novel continuous bio-composite fibres with a combination of wood pulp or lignin and synthetic polymers, using continuous electrospinning and extrusion processes. The electrospun composite fibres have potential application in filtration, wound dressing, non-woven fabrics and support of thin polymeric separation membranes. Lignin fibres could be used for the development of carbon fibres. Two types of polyethylene oxide electronspun composite fibres (300-600 nm in diameter) were formulated using treated and untreated wood fibre. The optimum polymer solution concentration (7 wt.%) and addition of 5 wt.% wood pulp were found to produce uniform composite fibres. Superior dispersion and orientation were obtained with acetylated wood pulp as compared to untreated fibres. Similarly, wood pulp and nylon 6,6 based bio-composite fibres were generated successfully by electrospinning process. In this study solution concentration was found to be a critical parameter in regulating the diameter of fibres. Bio-composite fibres were developed from wood pulp and polypropylene (PP) by an extrusion process and subsequently characterized by various techniques. Tensile properties of composite fibres were improved by addition of maleated polypropylene (MAPP) and wood pulp. Fourier transform infrared spectroscopy provided the nature of chemical interaction between wood pulp reinforcement and PP matrix. Scanning electron microscopy results revealed that MAPP treatment was effective in increasing reinforcing fibre-matrix compatibility. X-ray computed tomography showed that the fibre becomes more aligned along the length axis possibly due to compression and die geometry of the extruder. Finally, blended lignin fibres (hardwood lignin/polyethylene oxide) were successfully developed by an extrusion process. Softening temperature and glass transition temperature of lignin were measured by differential scanning calorimetry which was helpful in selecting an optimal temperature profile for the extrusion process. Rheological studies provided information about the viscosity of hardwood lignin which was useful in producing lignin fibres.
36

Development of Continuous Bio-composite Fibres

Awal, Md. Abdul 19 June 2014 (has links)
The purpose of this research work was to develop novel continuous bio-composite fibres with a combination of wood pulp or lignin and synthetic polymers, using continuous electrospinning and extrusion processes. The electrospun composite fibres have potential application in filtration, wound dressing, non-woven fabrics and support of thin polymeric separation membranes. Lignin fibres could be used for the development of carbon fibres. Two types of polyethylene oxide electronspun composite fibres (300-600 nm in diameter) were formulated using treated and untreated wood fibre. The optimum polymer solution concentration (7 wt.%) and addition of 5 wt.% wood pulp were found to produce uniform composite fibres. Superior dispersion and orientation were obtained with acetylated wood pulp as compared to untreated fibres. Similarly, wood pulp and nylon 6,6 based bio-composite fibres were generated successfully by electrospinning process. In this study solution concentration was found to be a critical parameter in regulating the diameter of fibres. Bio-composite fibres were developed from wood pulp and polypropylene (PP) by an extrusion process and subsequently characterized by various techniques. Tensile properties of composite fibres were improved by addition of maleated polypropylene (MAPP) and wood pulp. Fourier transform infrared spectroscopy provided the nature of chemical interaction between wood pulp reinforcement and PP matrix. Scanning electron microscopy results revealed that MAPP treatment was effective in increasing reinforcing fibre-matrix compatibility. X-ray computed tomography showed that the fibre becomes more aligned along the length axis possibly due to compression and die geometry of the extruder. Finally, blended lignin fibres (hardwood lignin/polyethylene oxide) were successfully developed by an extrusion process. Softening temperature and glass transition temperature of lignin were measured by differential scanning calorimetry which was helpful in selecting an optimal temperature profile for the extrusion process. Rheological studies provided information about the viscosity of hardwood lignin which was useful in producing lignin fibres.
37

Polyethylene oxide-containing block copolymers as surface modification additives in polyurethanes for protein and cell resistance /

Tan, Jiahong. Brash, John L., January 2004 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: John L. Brash. Includes bibliographical references. Also available online.
38

Effect of Process Parameters and Material Attributes on Crystallisation of Pharmaceutical Polymeric Systems in Injection Moulding Process. Thermal, rheological and morphological study of binary blends polyethylene oxide of three grades; 20K, 200K and 2M crystallised under various thermal and mechanical conditions using injection moulding

Mkia, Abdul R. January 2019 (has links)
Crystallisation is gaining a lot of interest in pharmaceutical industry to help designing active ingredients with tailored physicochemical properties. Many factors have been found to affect the crystallisation process, including process parameters and material attributes. Several studies in the literature have discussed the role of these parameters in the crystallisation process. A comprehensive study is still missing in this field where all the significant terms are taken into consideration, including the square effect and the interaction terms between different parameters. In this study, a thorough investigation into the main factors affecting crystallisation of a polymeric system, processed via injection moulding, was presented and a sample of response optimisation was introduced which can be mimicked to suite a specific need. Three grades of pure polyethylene oxide; 20K, 200K and 2M, were first characterised using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD) and shear rheometry. The onset of degradation and the rate varied according to molecular weight of polyethylene oxide (PEO). The peak melting temperature and the difference in enthalpy between melting and crystallisation were both in a direct proportion with PEO molecular weight. PEO200K and PEO2M struggle to recrystallise to the same extent of the original state at the tested cooling rates, while PEO20K can retain up to a similar crystallinity degree when cooled at 1 °C/min. Onset of crystallisation temperature (Tc1) was high for PEO2M and the difference between the 20K and 200K were pronounced at low cooling rate (20K is higher than 200K). The rheometer study showed that PEO2M has a solid-like structure around melting point which explains the difficulty in processing this grade at a low temperature via IM. PEO20K was almost stable within the strain values studied (Newtonian behaviour). For higher grades, PEO showed a shear thinning behaviour. The complex viscosity for PEO2M is characterised by a steeper slope compared to PEO200K, which indicates higher shear thinning sensitivity due to higher entanglement of the longer chains. For binary blends of PEO, the enthalpy of crystallisation studied by DSC was in direct proportion to the lowest molecular weight PEO content (PEOL %) in PEO20K/200K and PEO20K/2M blends. The effect of PEOL% on Tc1 became slightly pronounced for PEO20K-2M blends where Tc1 exhibited slight inverse proportionality to PEOL% and it became more significant for PEO200K-2M blends. It was interesting to find that Tc1 for the blends did not necessarily lie between the values of the homopolymers. In all binary blends, Tc1 was inversely proportional to cooling rate for the set of cooling rates tested. Thermal analysis using hot stage polarised light microscopy yields different behaviours of various PEO grades against the first detection of crystals especially where the lowest grade showed highest detection temperature. Visual observation of PEO binary blends caplets processed at various conditions via injection moulding (IM) showed the low-quality caplets processed at mould temperature above Tc1 of the sample. The factors affecting crystallisation of injection moulded caplets were studied using response surface methodology for two responses; peak melting temperature (Tm) and relative change in crystallinity (∆Xc%) compared to an unprocessed sample. Mould temperature (Tmould) was the most significant factor in all binary blend models. The relationship between Tmould and the two responses was positive non-linear at the Tmould ˂ Tc1. Injection speed was also a significant factor for both responses in PEO20K-200K blends. For Tm, the injection speed had a positive linear relationship while the opposite trend was found for ∆Xc%. The interaction term found in the RSM study for all models was only between the injection speed and the PEOL % which shows the couple effect between these two factors. Molecular effect was considered a significant factor in all ∆Xc% models across the three binary blends. The order of ∆Xc% sensitivity to the change in PEOL% was 3, 5 and 7 % for 20K-200K, 200K-2M and 20K-2M.
39

Local Structure and Molecular Dynamics of Supramolecules And Semicrystalline Polymers As Investigated By Solid State NMR

Chen, Wei 07 June 2016 (has links)
No description available.
40

Controlled release floating multiparticulates of metoprolol succinate by hot melt extrusion

Malode, V.N., Paradkar, Anant R, Devarajan, P.V. 30 June 2015 (has links)
Yes / We present hot melt extrusion (HME) for the design of floating multiparticulates. Metoprolol succinate was selected as the model drug. Our foremost objective was to optimize the components Eudragit® RS PO, polyethylene oxide (PEO) and hydroxypropyl methylcellulose (HPMC) to balance both buoyancy and controlled release. Gas generated by sodium bicarbonate in acidic medium was trapped in the polymer matrix to enable floating. Eudragit® RS PO and PEO with sodium bicarbonate resulted in multiparticulates which exhibited rapid flotation within 3 minutes but inadequate total floating time (TFT) of 3 hours. Addition of HPMC to the matrix did not affect floating lag time (FLT), moreover TFT increased to more than 12 hours with controlled release of metoprolol succinate. Floating multiparticulates exhibited t50% of 5.24 hours and t90% of 10.12 hours. XRD and DSC analysis revealed crystalline state of drug while FTIR suggested nonexistence of chemical interaction between the drug and the other excipients. The assay, FLT, TFT and the drug release of the multiparticulates were unchanged when stored at 40 °C/75%RH for 3 months confirming stability. We present floating multiparticulates by HME which could be extrapolated to a range of other drugs. Our approach hence presents platform technology for floating multiparticulates.

Page generated in 0.0814 seconds