91 |
Textile-based sensors for in-situ monitoring in electrochemical cells and biomedical applicationsHasanpour, Sadegh 07 December 2020 (has links)
This work explores the blending of e-textile technology with the porous electrode of
polymer electrolyte membrane fuel cells (PEMFCs) and with smart wound patches
to allow monitoring and in-situ diagnostics. This work includes contributions to understanding water transport and conductivity in the carbon cloth gas diffusion layer
(GDL), and further developing thread-based relative humidity (RH) and temperature
sensors, which can be sewn on a cloth GDL in PEMFCs. We also explore the
application of the developed RH and temperature sensors in wearable biomonitoring.
First, an experimental prototype is developed for evaluating water transport, thermal
conductivity and electrical conductivity of carbon cloth GDLs under different hydrophobic
coatings and compressions. Second, we demonstrate the addition of external
threads to the carbon cloth GDL to (1) facilitate water transport and (2) measure
local RH and temperature with a minimal impact on the physical, microstructural
and transport properties of the GDL. We illustrate the roll-to-roll process for fabricating
RH and temperature sensors by dip-coating commodity threads into a carbon
nanotubes (CNTs) suspension. The thread-based sensors response to RH and temperature in the working environment of PEMFCs is investigated. As a proof-of-concept, the local temperature of carbon cloth GDL is monitored in an ex-situ experiment.
Finally, we optimized the coating parameters (e.g. CNTs concentration, surfactant
concentration and a number of dipping) for the thread-based sensors. The
response of the thread-based sensors in room conditions is evaluated and shows a
linear resistance decrease to temperature and a quadratic resistance increase to RH.
We also evaluated the biocompatibility of the sensors by performing cell cytotoxicity
and studying wound healing in an animal model. The novel thread-based sensors
are not only applicable for textile electrochemical devices but also, show a promising
future in wearable biomonitoring applications. / Graduate
|
92 |
Validated Modelling of Electrochemical Energy Storage DevicesMellgren, Niklas January 2009 (has links)
This thesis aims at formulating and validating models for electrochemical energy storage devices. More specifically, the devices under consideration are lithium ion batteries and polymer electrolyte fuel cells. A model is formulated to describe an experimental cell setup consisting of a LixNi0.8Co0.15Al0.05O2 composite porous electrode with three porous separators and a reference electrode between a current collector and a pure Li planar electrode. The purpose of the study being the identification of possible degradation mechanisms in the cell, the model contains contact resistances between the electronic conductor and the intercalation particles of the porous electrode and between the current collector and the porous electrode. On the basis of this model formulation, an analytical solution is derived for the impedances between each pair of electrodes in the cell. The impedance formulation is used to analyse experimental data obtained for fresh and aged LixNi0.8Co0.15Al0.05O2 composite porous electrodes. Ageing scenarios are formulated based on experimental observations and related published electrochemical and material characterisation studies. A hybrid genetic optimisation technique is used to simultaneously fit the model to the impedance spectra of the fresh, and subsequently also to the aged, electrode at three states of charge. The parameter fitting results in good representations of the experimental impedance spectra by the fitted ones, with the fitted parameter values comparing well to literature values and supporting the assumed ageing scenario. Furthermore, a steady state model for a polymer electrolyte fuel cell is studied under idealised conditions. The cell is assumed to be fed with reactant gases at sufficiently high stoichiometric rates to ensure uniform conditions everywhere in the flow fields such that only the physical phenomena in the porous backings, the porous electrodes and the polymer electrolyte membrane need to be considered. Emphasis is put on how spatially resolved porous electrodes and nonequilibrium water transport across the interface between the gas phase and the ionic conductor affect the model results for the performance of the cell. The future use of the model in higher dimensions and necessary steps towards its validation are briefly discussed.
|
93 |
Elucidation of the Dominant Factor in Electrochemical Materials Using Pair Distribution Function Analysis / 二体相関関数解析を用いた電気化学材料の特性支配因子の解明Takahashi, Masakuni 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第23287号 / 人博第1002号 / 新制||人||236(附属図書館) / 2020||人博||1002(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 田部 勢津久, 准教授 戸﨑 充男 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
94 |
HIGHLY CONDUCTIVE SOLID POLYMER ELECTROLYTE CONTAINING LiBOB AT ROOM TEMPERATURE FOR ALL SOLID STATE BATTERYLi, Si January 2017 (has links)
No description available.
|
95 |
Study of highly conductive, flexible polymer electrolyte membranes and their novel flexoelectric effectRendon Piedrahita, Camilo January 2018 (has links)
No description available.
|
96 |
BIOELECTRICITY INSPIRED POLYMER ELECTROLYTE MEMBRANES FOR SENSING AND ENGERGY HARVESTING APPLICATIONSCao, Jinwei January 2018 (has links)
No description available.
|
97 |
Konzeption und Entwurf eines strukturellen Energiespeichers für Anwendungen in der Luft- und RaumfahrtKahlmeyer, Gabriel 18 October 2023 (has links)
Die Energieversorgung unbemannter Flugobjekte (UAV) erfolgt gegenwärtig über Batterie-Module. Diese sind als zusätzliche Bauteile in die Struktur eingebracht. Daher erhöht sich das Gesamtgewicht der Struktur deutlich. Im Sinne der Energiespeicherung existieren verschiedene multifunktionale Konzeptansätze. Hierunter zählen strukturelle, elektrische Energiespeicherungssysteme (SEES). Bei diesen Konzepten erfolgt die Energiespeicherung in den Bauteilen bei gleichzeitiger Erfüllung struktureller Eigenschaften. Somit gelten diese als masselose Energiespeicherungssysteme. Im Rahmen dieser Thesis erfolgt eine Betrachtung verschiedener SEES. Schließlich werden strukturelle Superkondensatoren (SSC) zur Integration in ein UAV ausgewählt. Als Integrationsobjekt dient die Drohne DJI Matrice 600 Pro. Ein SSC mit besten Eigenschaften wird anhand einer systematischen Methode aus der aktuellen Literatur ermittelt. Dieser Favorit wird konzeptionell in die Drohne integriert. Diesbezüglich erfolgen verschiedene, physikalische Berechnungen zu elektrischen Eigenschaften und anliegenden Kräften, sodass Rückschlüsse zur Leistungsfähigkeit getroffen werden können. Im weiteren Verlauf wird eine Mehrkörpersimulation mit der Finite-Elemente-Methode (FEM) am Untersuchungsobjekt durchgeführt. Mit der Kenntnis über die anliegenden Beanspruchungen erfolgt weiterführend eine detailgetreue, strukturmechanische Analyse des SSC unter Verwendung der FEM an repräsentativen Volumenelementen. Fortan wird das multiphysikalische Kopplungsphänomen im strukturellen Elektrolyten simuliert. Hierfür werden mathematische Abhängigkeiten von mechanischen Einwirkungen auf geometrisch, veränderliche Größen ermittelt. Diese werden in eine elektrochemische Simulation überführt, sodass das multiphysikalische Kopplungsphänomen berechnet wird. Als Ergebnis zeigt sich, dass die Kompression des Elektrolyten negative Auswirkungen auf die elektrochemischen Eigenschaften hat...:Symbol- und Abkürzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
1 Einleitung
2 Grundlagen
2.1 Strukturelle elektrische Energiespeicherungssysteme
2.2 Superkondensatoren – Aufbau und Funktionsweise
2.3 Berechnungsgrößen am strukturellen Superkondensator
3 Stand der Forschung
3.1 Literaturrecherche – Strukturelle Superkondensatoren
3.2 Festlegung von Parametern und Auswahl des SSC
4 Anwendungsfall: DJI Matrice 600 Pro
4.1 Produktanalyse DJI Matrice 600 Pro
4.2 Integration des strukturellen Superkondensators in die Struktur
4.3 Berechnung elektrischer Eigenschaften
4.4 Analyse und Berechnung der wirkenden Kräfte
4.5 FEM-Mehrkörpersimulation am UAV-Anwendungsfall
5 Strukturmechanische Simulation am SSC
5.1 SSC-Bereichsanalyse und Simulationsaufgabe
5.2 Repräsentative Volumenelemente und Einheitszelle
5.3 Simulation Bereich 1: Poröse Faser in der Matrix
5.4 Simulation Bereich 2: Fasern in der Matrix
5.5 Simulation Bereich 3: Poröser Elektrolyt
6 Multiphysikalische SSC-Simulation
6.1 Multiphysikalischer Kopplungseffekt
6.2 Analyse der geometrischen Größen Porosität und Tortuosität
6.3 Multiphysikalische Simulation mit COMSOL Multiphysics
Zusammenfassung und Ausblick
Literatur / Unmanned aerial vehicles (UAV) are currently powered by batteries, which are integrated as additional components within their structure. However, the substantial weight of these batteries
leads to increased energy consumption and reduced flight time. In addition to battery-based energy systems, there are alternative concepts that serve multifunctional roles. Structural electrical
energy storage systems (SEES) for example carry loads and offer electrical energy storage functions
at the same time. In this work, structural Supercapacitors (SSC) are selected as SEES candidates. A
systematic approach is employed to integrate an SSC into the DJI Matrice 600 Pro done as an UAV
use case. The efficiency of the integrated system is assessed through various physical calculations.
Subsequently, a multi-body simulation using the finite element method is conducted on the chosen
UAV model. Furthermore, representative volume elements are defined within the structural supercapacitor, and simulations are performed to comprehend the underlying processes. During the
exploration of multiphysical coupling effects between mechanical stresses and electrochemical behaviors, certain geometric parameters are identified as influential factors. Regression analysis is
employed to formulate mathematical equations representing these dependencies for simulation
purposes. A multiphysical simulation is executed, considering compression as a representative
load case. The results are evaluated using cyclic voltammetry. The study concludes that mechanical
compression loads have an adverse effect on the electrochemical properties of the structural supercapacitor:Symbol- und Abkürzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
1 Einleitung
2 Grundlagen
2.1 Strukturelle elektrische Energiespeicherungssysteme
2.2 Superkondensatoren – Aufbau und Funktionsweise
2.3 Berechnungsgrößen am strukturellen Superkondensator
3 Stand der Forschung
3.1 Literaturrecherche – Strukturelle Superkondensatoren
3.2 Festlegung von Parametern und Auswahl des SSC
4 Anwendungsfall: DJI Matrice 600 Pro
4.1 Produktanalyse DJI Matrice 600 Pro
4.2 Integration des strukturellen Superkondensators in die Struktur
4.3 Berechnung elektrischer Eigenschaften
4.4 Analyse und Berechnung der wirkenden Kräfte
4.5 FEM-Mehrkörpersimulation am UAV-Anwendungsfall
5 Strukturmechanische Simulation am SSC
5.1 SSC-Bereichsanalyse und Simulationsaufgabe
5.2 Repräsentative Volumenelemente und Einheitszelle
5.3 Simulation Bereich 1: Poröse Faser in der Matrix
5.4 Simulation Bereich 2: Fasern in der Matrix
5.5 Simulation Bereich 3: Poröser Elektrolyt
6 Multiphysikalische SSC-Simulation
6.1 Multiphysikalischer Kopplungseffekt
6.2 Analyse der geometrischen Größen Porosität und Tortuosität
6.3 Multiphysikalische Simulation mit COMSOL Multiphysics
Zusammenfassung und Ausblick
Literatur
|
98 |
The Fundamental Studies of Polybenzimidazole/Phosphoric Acid Polymer Electrolyte for Fuel CellsMa, Yulin 14 July 2004 (has links)
No description available.
|
99 |
The Effects of Cationic Contamination on Polymer Electrolyte Membrane Fuel CellsKienitz, Brian L. January 2009 (has links)
No description available.
|
100 |
Phase Diagram Approach to Control of Ionic Conductivity and Electrochemical Stability of Solid Polymer Electrolyte Membrane for Li-ion Battery ApplicationCao, Jinwei 28 May 2014 (has links)
No description available.
|
Page generated in 0.0552 seconds