1 |
Performance Improvement of Latex-based PSAs Using Polymer Microstructure ControlQie, Lili 02 February 2011 (has links)
This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA’s bonding strength to a substrate while shear strength reflects a PSA’s capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength.
In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel content PSAs showed very low tack and peel strength as well as extremely large shear strength readings.
In the second part of this thesis, in order to improve the tack and peel strength of medium and high gel content PSAs, the monomer composition and emulsifier concentration were varied. It was found that changing the monomer mixture from BA/MMA to BA/acrylic acid (AA)/2-hydroxyethyl methacrylate (HEMA) while simultaneously decreasing emulsifier concentration dramatically improved the corresponding PSAs’ shear strength as well as tack and peel strength. The addition of polar groups to the PSA increased its cohesive strength due to the presence of strong hydrogen bonding; meanwhile, PSA films’ surface tension increased.
In the third part, two series of BA/AA/HEMA latexes were generated by varying the amounts of CTA either in the absence or presence of cross-linker. The latexes produced in the absence of cross-linker exhibited significantly larger Mc and Mw compared to their counterparts with similar gel contents prepared with cross-linker. The PSAs with the larger Mc and Mw showed much larger shear strengths due to improved entanglements between the polymer chains.
In the final part of the thesis, the performance of the BA/AA/HEMA PSAs was further improved by post-heating. Compared with original latex-based PSAs with similar gel contents, heat-treated PSAs showed not only significantly improved shear strengths, but also much larger tack and peel strengths. The different shear strengths were related to the PSAs’ gel structures, which were discrete in the original PSAs but continuous in the heat-treated PSAs. The improved tack and peel strengths were related to the PSA films’ surface smoothness. During the post-heating process, the PSA polymer flowed, resulting in much smoother surfaces than the original PSA films. In addition, the effect of post-heating was related to the polymer microstructure of the untreated PSAs. Decreasing the amount of very small or very big polymers or simultaneously increasing Mc and Mw could lead to post-treated PSAs with significantly better performance. Moreover, it was found that by optimizing the polymer microstructure of the original latex-based PSAs, it was possible to obtain a treated PSA with similar or even better performance than a solvent-based PSA with similar polymer microstructure.
Our original objective was surpassed: in two cases, not only was shear strength greatly improved, but so were tack and peel strength due to the simultaneous modification of PSA bulk and surface properties.
|
2 |
Performance Improvement of Latex-based PSAs Using Polymer Microstructure ControlQie, Lili 02 February 2011 (has links)
This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA’s bonding strength to a substrate while shear strength reflects a PSA’s capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength.
In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel content PSAs showed very low tack and peel strength as well as extremely large shear strength readings.
In the second part of this thesis, in order to improve the tack and peel strength of medium and high gel content PSAs, the monomer composition and emulsifier concentration were varied. It was found that changing the monomer mixture from BA/MMA to BA/acrylic acid (AA)/2-hydroxyethyl methacrylate (HEMA) while simultaneously decreasing emulsifier concentration dramatically improved the corresponding PSAs’ shear strength as well as tack and peel strength. The addition of polar groups to the PSA increased its cohesive strength due to the presence of strong hydrogen bonding; meanwhile, PSA films’ surface tension increased.
In the third part, two series of BA/AA/HEMA latexes were generated by varying the amounts of CTA either in the absence or presence of cross-linker. The latexes produced in the absence of cross-linker exhibited significantly larger Mc and Mw compared to their counterparts with similar gel contents prepared with cross-linker. The PSAs with the larger Mc and Mw showed much larger shear strengths due to improved entanglements between the polymer chains.
In the final part of the thesis, the performance of the BA/AA/HEMA PSAs was further improved by post-heating. Compared with original latex-based PSAs with similar gel contents, heat-treated PSAs showed not only significantly improved shear strengths, but also much larger tack and peel strengths. The different shear strengths were related to the PSAs’ gel structures, which were discrete in the original PSAs but continuous in the heat-treated PSAs. The improved tack and peel strengths were related to the PSA films’ surface smoothness. During the post-heating process, the PSA polymer flowed, resulting in much smoother surfaces than the original PSA films. In addition, the effect of post-heating was related to the polymer microstructure of the untreated PSAs. Decreasing the amount of very small or very big polymers or simultaneously increasing Mc and Mw could lead to post-treated PSAs with significantly better performance. Moreover, it was found that by optimizing the polymer microstructure of the original latex-based PSAs, it was possible to obtain a treated PSA with similar or even better performance than a solvent-based PSA with similar polymer microstructure.
Our original objective was surpassed: in two cases, not only was shear strength greatly improved, but so were tack and peel strength due to the simultaneous modification of PSA bulk and surface properties.
|
3 |
Performance Improvement of Latex-based PSAs Using Polymer Microstructure ControlQie, Lili 02 February 2011 (has links)
This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA’s bonding strength to a substrate while shear strength reflects a PSA’s capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength.
In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel content PSAs showed very low tack and peel strength as well as extremely large shear strength readings.
In the second part of this thesis, in order to improve the tack and peel strength of medium and high gel content PSAs, the monomer composition and emulsifier concentration were varied. It was found that changing the monomer mixture from BA/MMA to BA/acrylic acid (AA)/2-hydroxyethyl methacrylate (HEMA) while simultaneously decreasing emulsifier concentration dramatically improved the corresponding PSAs’ shear strength as well as tack and peel strength. The addition of polar groups to the PSA increased its cohesive strength due to the presence of strong hydrogen bonding; meanwhile, PSA films’ surface tension increased.
In the third part, two series of BA/AA/HEMA latexes were generated by varying the amounts of CTA either in the absence or presence of cross-linker. The latexes produced in the absence of cross-linker exhibited significantly larger Mc and Mw compared to their counterparts with similar gel contents prepared with cross-linker. The PSAs with the larger Mc and Mw showed much larger shear strengths due to improved entanglements between the polymer chains.
In the final part of the thesis, the performance of the BA/AA/HEMA PSAs was further improved by post-heating. Compared with original latex-based PSAs with similar gel contents, heat-treated PSAs showed not only significantly improved shear strengths, but also much larger tack and peel strengths. The different shear strengths were related to the PSAs’ gel structures, which were discrete in the original PSAs but continuous in the heat-treated PSAs. The improved tack and peel strengths were related to the PSA films’ surface smoothness. During the post-heating process, the PSA polymer flowed, resulting in much smoother surfaces than the original PSA films. In addition, the effect of post-heating was related to the polymer microstructure of the untreated PSAs. Decreasing the amount of very small or very big polymers or simultaneously increasing Mc and Mw could lead to post-treated PSAs with significantly better performance. Moreover, it was found that by optimizing the polymer microstructure of the original latex-based PSAs, it was possible to obtain a treated PSA with similar or even better performance than a solvent-based PSA with similar polymer microstructure.
Our original objective was surpassed: in two cases, not only was shear strength greatly improved, but so were tack and peel strength due to the simultaneous modification of PSA bulk and surface properties.
|
4 |
Effects of Friction Stir Welding on Polymer MicrostructureStrand, Seth R. 13 February 2004 (has links) (PDF)
This work establishes the relationships between several key Friction Stir Welding process parameters and the resulting microstructural and flexural properties of the welded joint. A series of four single parameter experiments were run. The parameters investigated were pin diameter, feedrate, shoe temperature, and pressure time. Butt welds were made in 6 mm thick stress-relieved extruded polypropylene sheet. Three-point bend tests were used to determine the ultimate flexural strength and coincident strain. The maximum bend angle before failure was used to label the welds as "good or bad." An optical microscope capable of cross polarization was used to examine and photograph the weld microstructure. Welds were evaluated according to 1) DVS bend angle, 2) flexural properties, and 3) weld microstructure. All welds made surpassed the DVS requirements for classification as a "good weld" established for hot-gas, extrusion, and laser welding processes. Most welds met the bend angle requirement for hot-plate welds. Welds created for this work maintained 80-92% of base material flexural strength. In the majority of the welds, the strength was between 85 and 90% of base material. The FSW joints showed a flexural strength of 10500 psi, compared to a base material strength of 12400 psi. Four microstructural zones were found to exist in the FSW joints. These were: 1)advancing interface, 2) retreating interface, 3) bottom disturbance, and 4) central zone. Several common microstructure types and defects were found to exist in the welds. These were: 1) spherulites, 2) voids, 3) root defects, 4) flow lines, and 5) onion skin. A distinct correlation was observed between weld microstructure and flexural properties. Those welds whose microstructure most nearly resembled the base material demonstrated the best flexural properties. This can be accomplished by operating with a low feedrate, a high shoe temperature, and a large pin.
|
5 |
Performance Improvement of Latex-based PSAs Using Polymer Microstructure ControlQie, Lili January 2011 (has links)
This thesis aims to improve the performance of latex-based pressure-sensitive adhesives (PSAs). PSA performance is usually evaluated by tack, peel strength and shear strength. Tack and peel strength characterize a PSA’s bonding strength to a substrate while shear strength reflects a PSA’s capability to resist shear deformation. In general, increasing shear strength leads to a decrease in tack and peel strength. While there are several commercial PSA synthesis methods, the two most important methods consist of either solvent-based or latex-based techniques. While latex-based PSAs are more environmentally compliant than solvent-based PSAs, they tend to have much lower shear strength, at similar tack and peel strength levels. Therefore, the goal in this thesis was to greatly improve the shear strength of latex-based PSAs at little to no sacrifice to tack and peel strength.
In this study, controlling the polymer microstructure of latexes or their corresponding PSA films was used as the main method for improving the PSA performance. The research was sub-divided into four parts. First, the influence of chain transfer agent (CTA) and cross-linker on latex polymer microstructure was studied via seeded semi-batch emulsion polymerization of butyl acrylate (BA) and methyl methacrylate (MMA). Three techniques were used to produce the latexes: (1) adding CTA only, (2) adding cross-linker only, and (3) adding both CTA and cross-linker. It was found that using CTA and cross-linker simultaneously allows one to expand the range of latex microstructural possibilities. For example, latexes with similar gel contents but different Mc (molecular weight between cross-links) and Mw (molecular weight of sol polymers) could be produced if CTA and cross-linker concentration are both increased. However, for the corresponding PSAs with similar gel contents, the relationship between their polymer microstructure and performance was difficult to establish as almost all of the medium and high gel content PSAs showed very low tack and peel strength as well as extremely large shear strength readings.
In the second part of this thesis, in order to improve the tack and peel strength of medium and high gel content PSAs, the monomer composition and emulsifier concentration were varied. It was found that changing the monomer mixture from BA/MMA to BA/acrylic acid (AA)/2-hydroxyethyl methacrylate (HEMA) while simultaneously decreasing emulsifier concentration dramatically improved the corresponding PSAs’ shear strength as well as tack and peel strength. The addition of polar groups to the PSA increased its cohesive strength due to the presence of strong hydrogen bonding; meanwhile, PSA films’ surface tension increased.
In the third part, two series of BA/AA/HEMA latexes were generated by varying the amounts of CTA either in the absence or presence of cross-linker. The latexes produced in the absence of cross-linker exhibited significantly larger Mc and Mw compared to their counterparts with similar gel contents prepared with cross-linker. The PSAs with the larger Mc and Mw showed much larger shear strengths due to improved entanglements between the polymer chains.
In the final part of the thesis, the performance of the BA/AA/HEMA PSAs was further improved by post-heating. Compared with original latex-based PSAs with similar gel contents, heat-treated PSAs showed not only significantly improved shear strengths, but also much larger tack and peel strengths. The different shear strengths were related to the PSAs’ gel structures, which were discrete in the original PSAs but continuous in the heat-treated PSAs. The improved tack and peel strengths were related to the PSA films’ surface smoothness. During the post-heating process, the PSA polymer flowed, resulting in much smoother surfaces than the original PSA films. In addition, the effect of post-heating was related to the polymer microstructure of the untreated PSAs. Decreasing the amount of very small or very big polymers or simultaneously increasing Mc and Mw could lead to post-treated PSAs with significantly better performance. Moreover, it was found that by optimizing the polymer microstructure of the original latex-based PSAs, it was possible to obtain a treated PSA with similar or even better performance than a solvent-based PSA with similar polymer microstructure.
Our original objective was surpassed: in two cases, not only was shear strength greatly improved, but so were tack and peel strength due to the simultaneous modification of PSA bulk and surface properties.
|
6 |
Characterization and modeling of microstructure evolution of cable insulation system under high continuous electric field / Caractérisation et modélisation de l'évolution de la microstructure de matériaux isolants pour câbles sous fort champ électrique continuGuffond, Raphaël 06 March 2018 (has links)
Le sujet de cette thèse porte sur la compréhension et la modélisation du comportement électrique de système d'isolation soumis à un fort champ électrique continu. Les propriétés électriques du polymère sont directement pilotées par ses hétérogénéités chimiques et physiques présentes à plusieurs échelles. Dans cette étude, un nouveau modèle est développé ayant pour but de simuler l'évolution de la microstructure de polymère avec la température, le champ électrique et le temps et de simuler l'impact de cette évolution sur les propriétés électriques du polymère. Dans ce modèle, des matrices sont utilisées pour décrire la distribution de chacune des hétérogénéités et propriété électriques d'un polymère semi-cristallin. L'évolution de ces matrices de microstructure suit des lois génétiques dont la définition a été obtenue à partir d'une caractérisation fine des propriétés physicochimiques et électriques de matériaux spécifiques en fonction de la température et du champ électrique. Ces lois implémentées sont basés sur des calculs simples permettant un temps de résolution plus rapide comparativement aux autres modèles préexistants. Basée sur ces lois d'évolutions génétiques, le comportement électrique sous champ électrique continue de polymère isolant peut être simulé uniquement à partir d'une caractérisation physique et chimique de ce polymère. Le modèle est ainsi capable de reproduire le comportement électrique de plusieurs polymères semi-cristallins et de suivre les données expérimentales mesurées par ailleurs. Le modèle intègre plusieurs physiques tels que la diffusion, le transport ionique et le transport électronique, lui permettant ainsi de prendre en compte l'influence d'un grand nombre d'hétérogénéités. / This thesis presents a research work on understanding and modeling the electrical behavior of insulation system in cables subjected to high DC constraints. Electrical properties of polymeric insulation are directly related to their chemical and physical heterogeneities present at several scales. In this work, a new model is developed to simulate the modification over time of the microstructure in insulation polymers under electric field and temperature as well as the subsequent impacts on electrical properties. In this model, matrices are used to describe the distribution of each heterogeneity and electrical property in semi-crystalline polymer. When stressed under electric field and at temperature, matrices of microstructure evolve from implemented genetic laws. This simulated microstructure evolution yields to the simulation of electrical property changes over time at transient and steady state. To define these genetic laws, a detailed characterization of the physical, chemical and electrical properties of specific materials as a function of temperature and electric field is experimentally performed. Genetic laws are notably implemented to take into account the impact of the semi-crystalline structure and the presence of chemical residues in polymer electrical properties. Based on these genetic evolution laws, this modeling approach allows simulating DC electrical behavior of polymers only from their physical and chemical characterizations and reproduce accurately experimental electrical behavior with a faster solving time compared to other simulation methods.
|
Page generated in 0.094 seconds