Spelling suggestions: "subject:"polyimides"" "subject:"polyamides""
1 |
Structure-property study of kapton PMDA-ODA polyimide filmsCha, Cheol Yong 08 1900 (has links)
No description available.
|
2 |
Hydroxyl-Containing Aromatic Polyimides for Carbon Dioxide Removal from Natural GasAlaslai, Nasser Y. 10 1900 (has links)
Natural gas is among the most dominant resources to provide energy supplies and Saudi
Arabia ranks among the top 5 producers worldwide. However, prior to use of methane, natural
gas has to be treated to remove other feed gas components, such as H2O, CO2, H2S, N2 and C2+
hydrocarbons. Most NG fields in KSA contain about 10 mol% carbon dioxide that has to be
reduced to less than 2 mol% for pipeline delivery.
The conventional unit operations for natural gas separations, that is, molecular sieves, amine
absorption, cryogenic distillation, and turbo expansion exhibit some disadvantages in terms of
economics, operational flexibility or system footprint. One of the most attractive alternative is
membrane technology in either standalone- or hybrid system configuration. Currently, the only
two membrane materials used in industrial natural gas applications are cellulose acetate and
polyimide, which have moderate permeability and fairly low selectivity when tested under
realistic industrial conditions. The goal for future research is to develop unique polymeric
membranes, which can at least partially replace conventional gas processing in future natural gas
projects. This will support global economics and specifically the economy of Saudi Arabia.
Newly developed polymeric materials must meet certain criteria to be used on a commercial
scale. These criteria include: (i) high permeability and selectivity, (ii) processability into thin
films, (iii) mechanical and thermal stability, and (iv) chemical stability against feed gas
components.
This project focused on the removal of carbon dioxide from natural gas by
developing and characterizing functionalized aromatic polyimide membrane materials that
exhibit very high selectivity under aggressive mixed-gas conditions. 6FDA-DAR demonstrated a
mixed-gas CO2/CH4 selectivity of 78 at a CO2 partial pressure of 10 bar with no pronounced
indication of plasticization. Combining hydroxyl- and carboxyl groups in a miscible polyimide
blend led to mixed-gas CO2/CH4 selectivity of 100 with no aging and no plasticization effects.
This burgeoning membrane material has very high potential in large-scale natural gas separations
with the best overall performance of any type developed to date.
|
3 |
Préparation d’un composite hybride par co-malaxeur : influence des paramètres de mise en oeuvre sur les propriétés / Preparation of an hybrid composite material with a co-kneader : influence of processing parameters on the propertiesAxel, Salinier 19 December 2014 (has links)
Ce travail de thèse porte sur les relations entre les paramètres de mise en œuvre à l’état fondu et les propriétés d’un composite hybride à matrice thermoplastique. Les charges étudiées sont les fibres de verre courtes (échelle micrométrique) et les nanotubes de carbone (NTC) (échelle nanométrique) dispersées dans une matrice thermoplastique thermostable, le poly(éther imide) (PEI). Nous avons montré que les fibres de verre participent fortement à la structuration du réseau de NTC et que la conductivité électrique du composite hybride est plus élevée que celle des nanocomposites. Les paramètres de mise en œuvre et notamment le paramètre Energie Mécanique Spécifique (EMS) a une forte influence sur les propriétés des composites hybrides et notamment sur la conductivité électrique. Il a été montré que les variations de conductivité électrique sont la conséquence d’un changement d’état de dispersion des NTC. Le taux de fibres de verre introduit dans le nanocomposite PEI/NTC a une forte influence sur la conductivité du composite hybride. Il est possible de contrôler la conductivité électrique du composite multi-échelles en modifiant le taux de fibres de verre introduit notamment pour des concentrations en NTC proche du seuil de percolation. / This PhD work deals with the relationship between the processing parameters at the melt state and the polymer matrix hybrid composite material’s properties. The fillers studied are short glass fibres (micrometric scale) and carbon nanotubes (CNT) (nanometric scale) dispersed in a high temperature polymer matrix, the poly(etherimide) (PEI). We showed that glass fibres strongly participate in the CNT network structuration and that electrical conductivity of multiscale composite materials is higher than the one of nanocomposite materials. The combination of the two fillers allows obtaining a synergy effect for the mechanical properties especially for the elongation at break which is due to a preferential localization of CNT at the PEI/glass fibres interfaces. The study of the influence of processing parameters on the properties of nanocomposite materials and hybrid composite materials showed that Specific Mechanical Energy (SME) has a strong influence on the hybrid composite material properties and especially on the electrical conductivity. These variations are the consequences of CNT network modifications. Glass fibres concentration has also a strong influence on the electrical conductivity of the hybrid composite materials. It is possible to adjust the electrical conductivity with modifying the concentration of glass fibres especially for the CNT amount closed to the electrical percolation threshold.
|
4 |
Synthesized polyimide membranes for pervaporation separations of toluene/iso-octane mixturesXu, Wen Yuan 30 April 2014 (has links)
Separation of aromatic/aliphatic hydrocarbon mixtures by pervaporation has been of increasing interest in recent decades. Dozens of polymer materials have been reported for separations of benzene/cyclohexane and toluene/iso-ocatne mixtures. However, fundamental understanding of material structure and transport relations is not adequate to generalize guidelines for materials screening. The goals of this study are to tailor the structure of the polyimide materials, correlate the structure and transport relations, and establish guidelines for future materials. The 3, 5-Diaminobenzoic acid (DABA) containing polyimides were synthesized by both chemical and thermal solution imidization. The synthesized polyimides were formed into dense films by solution casting. The physical properties of the polyimides synthesized with monomers: 2, 2-bis (3, 4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), 4, 6-trimethyl-1, 3-phenylendiamine (DAM) and DABA, were characterized by DSC, WAXD, GPC and density. The chemical structures were assessed by FTIR and NMR. The pervaporation and sorption of the synthesized polyimide membranes were tested in toluene/iso-octane mixtures at 100°C. The structure- transport property relations were established for the 6FDA-DAM/DABA membranes. The 6FDA-DAM/DABA polyimides were crosslinked by ethylene glycol. The pervaporation and sorption of the crosslinked membranes were tested in toluene/iso-octane mixtures at 100°C. Thermal imidization was found to give a higher imidization degree than chemical imidization. As a result, the polyimides made by chemical imidization contain a higher percentage of carboxylic acid groups than those made by thermal imidization. Chemical imidization gives higher film density, glass transition temperature and lower flux and higher selectivity for the toluene/iso-octane pervaporation than the thermally imidized membranes because of the higher carboxylic acid concentration. The chemically imidized membranes are slightly brittle after the crosslinking. Only the thermal imidization membranes have good flexibility and its pervaporation selectivity improves significantly after the crosslinking. Solubility selectivity and diffusivity selectivity of the 6FDA-DAM/DABA membranes were correlated with solubility parameters and fractional free volume, respectively. The structure-mass transport relations show that for the 6FDA-DAM/DABA membranes, both solubility selectivity and diffusivity selectivity contribute to the pervaporation selectivity. For the chemically imidized membranes, increased DABA concentration has a positive effect on solubility selectivity and diffusivity selectivity. For the thermally imidized membranes, increased DABA concentration has a significant effect on diffusivity selectivity only. / text
|
Page generated in 0.0846 seconds