1 |
Análise da estabilidade de sistemas dinâmicos periódicos usando Teoria de Sinha /Mesquita, Amábile Jeovana Neiris. January 2007 (has links)
Orientador: Masayoshi Tsuchida / Banca: José Manoel Balthazar / Banca: Elso Drigo Filho / Resumo: Neste trabalho estuda-se alguns sistemas dinâmicos utilizando um novo método para aproximar a matriz de transição de estados (STM) para sistemas periódicos no tempo. Este método é baseado na transformação de Lyapunov-Floquet (L-F), e utiliza a expansão polinomial de Chebyshev para aproximar o termo periódico. O método iterativo de Picard é usado para aproximar a STM. Os multiplicadores de Floquet, determinados através deste método, permitem construir o diagrama de estabilidade do sistema dinâmico. Esta técnica é aplicada para analisar a estabilidade e os pontos de bifurcação do sistema dinâmico formado por um pêndulo elástico com excitação vertical periódica no suporte. Além dessa aplicação, é analisada também a equação de Mathieu e a estabilidade do sistema dinâmico constituído por partículas carregadas e imersas em um campo magnético perturbado. / Abstract: In this work some dynamic systems are studied using a new method to approach state transition matrix (STM) for time-periodic systems. This method is based on Lyapunov- Floquet transformation (transformation L-F) and uses the Chebyshev polynomial expansion to approach the periodical term. The Picard iterative method is used to approach the STM. The Floquet multipliers determined through this method, allow to draw the stability diagram of the dynamic system. This technique is applied to analyze the stability and bifurcation points of the dynamic system formed by an elastic pendulum with periodic vertical excitation on support. Besides this application, the Mathieu equation is analyzed and also the stability of the dynamical system constituted by charged particle in a perturbed magnetic field is discussed. / Mestre
|
2 |
Comportamento assintótico dos polinômios ortogonais de Sobolev-Jacobi e Sobolev-Laguerre /Barros, Michele Carvalho de. January 2008 (has links)
Orientador: Eliana Xavier Linhares de Andrade / Banca: Ana Paula Peron / Banca: Alagacone Sri Ranga / Resumo: Sejam Sn(x); n ¸ 0; os polinômios de Sobolev, ortogonais com relação ao produto interno hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; onde fdÃ0; dÃ1g forma um par coerente de medidas relacionadas às medidas de Jacobi ou de Laguerre. Denotemos por PÃ0 n (x) e PÃ1 n (x); n ¸ 0; os polinômios ortogonais com respeito a dÃ0 e dÃ1; respectivamente. Neste trabalho, estudamos o comportamento assintótico, quando n ! 1; das razões entre os polinômios de Sobolev, Sn(x); e os polinômios ortogonais PÃ0 n (x) e PÃ1 n (x); além do comportamento limite da razão entre esses dois últimos polinômios. Propriedades assintóticas para os coeficientes da relação de recorrência satisfeita pelos polinômios de Sobolev também foram estudadas. / Abstract: Let Sn(x); n ¸ 0; be the Sobolev polynomials, orthogonal with respect to the inner product hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; where fdÃ0; dÃ1g forms a coherent pair of measures related to the Jacobi measure or Laguerre measure. Let PÃ0 n (x) and PÃ1 n (x); n ¸ 0; denote the orthogonal polynomials with respect to dÃ0 and dÃ1; respectively. In this work we study the asymptotic behaviour, as n ! 1; of the ratio between the Sobolev polynomials, Sn(x); and the ortogonal polynomials PÃ0 n (x) and PÃ1 n (x); as well as the limit behaviour of the ratio between the last two polynomials. Furthermore, we also give asymptotic results for the coefficients of the recurrence relation satisfied by the Sobolev polynomials. / Mestre
|
3 |
Limitantes para os zeros de polinômios gerados por uma relação de recorrência de três termos /Nunes, Josiani Batista. January 2009 (has links)
Orientador: Eliana Xavier Linhares de Andrade / Banca: Alagacone Sri Ranga / Banca: Andre Piranhe da Silva / Resumo: Este trabalho trata do estudo da localização dos zeros dos polinômios gerados por uma determinada relação de recorrência de três termos. O objetivo principal é estudar limitantes, em termos dos coeficientes da relação de recorrência, para as regiões onde os zeros estão localizados. Os zeros são explorados atravé do problema de autovalor associado a uma matriz de Hessenberg. As aplicações são consideradas para polinômios de Szeg"o fSng, alguns polinômios para- ortogonais ½Sn(z) + S¤n (z) 1 + Sn(0) ¾ e ½Sn(z) ¡ S¤n (z) 1 ¡ Sn+1(0) ¾, especialmente quando os coeficientes de reflexão são reais. Um outro caso especial considerado são os zeros do polinômio Pn(z) = n Xm=0 bmzm, onde os coeficientes bm; para m = 0; 1; : : : ; n, são complexos e diferentes de zeros. / Abstract: In this work we studied the localization the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to study bounds, in terms of the coe±cients of the recurrence relation, for the regions where the zeros are located. The zeros are explored through an eigenvalue representation associated with a Hessenberg matrix. Applications are considered to Szeg}o polynomials fSng, some para-orthogonal polyno- mials ½Sn(z) + S¤n (z) 1 + Sn(0) ¾and ½Sn(z) ¡ S¤n (z) 1 ¡ Sn+1(0) ¾, especially when the re°ection coe±cients are real. As another special case, the zeros of the polynomial Pn(z) = n Xm=0 bmzm, where the non-zero complex coe±cients bm for m = 0; 1; : : : ; n, were considered. / Mestre
|
Page generated in 0.0425 seconds