• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The preparation and characterization of polypropylene-compatibilizer-filler composites

Huang, Huan Yao, barbar0324@gmail.com January 2010 (has links)
Polypropylene (PP) composites includ a mineral filler, though they can be enhanced by blending with an elastomer. Blending rigid fillers with PP increased strength while decreasing toughness. Blending soft elastomers with PP decreased strength while increasing toughness. PP-elastomer-filler ternary composites offer synergism because the increase of strength due to filler may compensate the loss of strength due to the elastomer. Two morphologies were identified, separated elastomer and filler particles in PP, and filler particles encapsulated by elastomer in PP. Interaction between filler and PP matrix are proposed to increase with the addition of polar elastomers when encapsulated morphology is formed, leading to enhanced mechanical properties. PP-elastomer-filler blended tapes were prepared via single-screw extrusion. Annealing was performed after cooling the tapes, and this combination proved to increase the modulus. Characterization of the composites was carri ed out using thermogravimetry, dynamic-force thermomechanometry, modulated-force thermomechanometry, and Fourier transform infrared imaging. Incorporation of polysiloxane elastomer increased the mobility of PP during extrusion. Elongation at break increased with increasing polysiloxane content, while the tensile modulus was slightly decreased. The silica core within the polysiloxane particles provided an additional strength enhancement. Polar elastomers aided binding between PP and fillers, while enhancing strength and toughness. Glass transition temperature and segmental motion activation energy was shifted to higher temperature with addition of elastomer and filler, including kaolin and talc.
2

Strengthening masonry for seismic actions in developing countries

Ali, Ather January 2017 (has links)
The study presented aims to provide the most viable seismic retrofit solution for rural masonry. Muzffarabad is one such region where excess of unreinforced masonry structures claimed thousands of lives during 2005 earthquake. Field study was conducted in the region to familiarize with the dynamics of local construction industry before suggesting a suitable retrofit solution. Polypropylene (PP-) band retrofit has been selected as the most viable solution for retrofitting existing masonry structures in terms of cost, material availability and ease of application. To prove the efficiency of PP-band retrofit, numerical simulations and laboratory tests were conducted to assess the seismic efficiency of PP-band retrofit. Material tests were conducted in accordance with BS-EN to familiarize with the mechanical properties of locally available materials in Kashmir region and to provide material data for numerical analysis. Tests revealed lower strength and elasticity for bricks in comparison to materials found in developed countries, due to the unregulated and non-standardized manufacturing of masonry units and high water content in mortars. Shake table tests were conducted to test the effectiveness of PP-band retrofit masonry under dynamic vibrations. Results show that PP-band retrofit can enhance the post peak performance by at least 7 times in comparison to non-retrofit specimen. Real-scale structure retrofit with PP-band survived accelerations of up to 2g without any life-threatening damage, thus, proving to be an economic and efficient strengthening solution for rural communities. Following the shortcomings observed in Room-1, connection detail for PP-bands in Room-2 was revised to achieve a 100% performance enhancement. Numerical models were developed to predict cracks in masonry and analyse diagonal compression test models, in accordance with ASTM standards. The results showed 30% higher residual strength after cracking for PP- band retrofit masonry and the wall integrity was maintained for higher deformations.
3

The blending and permeability of polymers for packaging applications

Thomas, Ian MacIntyre January 1995 (has links)
In this study, commercially available isotactic polypropylene (PP) and nylon-6 (PA6) blends and laminates were prepared, to develop a material with optimal water vapour and oxygen barrier properties. The effect of compatibilizers on phase dispersion has been investigated using three commercial Polybond's, PB3002, PB1001, and PB3009. Three compatibilizers prepared in-house were also used as, maleic anhydride(MA) grafted on PP, MA and butyl methacrylate(BMA) co-polymer grafted on PP, and BMA grafted on low density polyethylene. The effect of two silanes( methacrylate functional and vinyl functional) on PP were also investigated and also the plasticization of PA6 with formic acid. The results were compared with a commercial blend of PP and PA6, Orgalloy R-6000. Light microscopy with phase and fluorescence contrast has been used for morphological evaluation. Chemical changes were studied by Fourier Transform Infrared Spectroscopy and rheology by dynamic and steady state measurements. Barrier properties were determined gravimetrically for water vapour and organic solvents, and for oxygen by an Oxtran apparatus. The results have shown that phase dispersion can be more easily explained by molecular interactions than by the rheological parameters. The blend slip factor has been improved however by compatibilizers and consequently the phase dispersion, which had little effect on the barrier properties of the blends and indeed the laminates were more effective water vapour barriers. The availability of particular functional groups, which can interact with the permeant is the most important parameter, which can be affected by processing and blending conditions. The addition of hydrophobic functional groups into polypropylene was therefore the most effective method for enhancing the barrier properties of polypropylene. Cross-linking of the matrix polymer has improved the barrier properties to a lesser extent. It has also been shown, that PP solvent permeability (particularly di-chloromethane) can be improved, by silane addition.
4

Heterogenní radikálová modifikace polypropylenu / Heterogeneous Radical Modification of Polypropylene

Brňák, Matúš January 2018 (has links)
The diploma thesis deals with the heterogeneous technique of preparation of grafted polypropylene g maleic anhydride (PP-g-MAH). The knowledge of the course of the reaction and its impact on the PP grafting process are summarized in the theoretical part. The preparation of the grafted PP was carried out in a fluidized polymerization reactor at 115 °C, speed of mixing 210 rpm, reaction time 60 min and pressure 6 bar. The amount of grafted MAH was monitored by using a MAH concentration 3 and 5 wt% and an initiator concentration 0.25; 0.5; 1; and 1.5 wt%. Modification efficiency was compared by using 3 types of PP with different particle morphology and specific surface area. By creating the theoretical model, the maximum surface concentration of MAH was calculated and compared with experimental data. Characterization of PP materials was performed by Electron Scanning Microscopy (SEM), Differential Scanning Calorimetry (DSC) and particle surface analysis by BET. Quantitative analysis of grafted MAH was determined by FTIR spectroscopy and acid-base titration.
5

Technologie výroby tělesa mixážního tubusu z plastu / Manufacturing technology of plastic mixing body tube corpus

Pipek, Josef January 2010 (has links)
This master´s thesis deals with the complex manufacturing technology of plastic injection moulding. Literary work summarises knowledge of thermoplastic injection, thermoplastic bonding and choosing the right material for the given product. The reaction between the product and chemical substances plays a key role when choosing the right material. Therefore polypropylene is chosen for its high chemical and mechanical resistance. The given material is defined by technological data and technological process is proposed. A single-purpose injection mould for an existing injection machine is proposed for manufacturing the plastic mixing body tube corpus.
6

Recycling of Glass Fiber Composites

Krishnamoorthi, Ramesh, Shinzhao, Zhang January 2012 (has links)
Composites are the materials which can be used for a wide variety of applications andproducts such as sports equipment, aerospace and marine because of light and stiffnessproperties. Composites are often made from thermoset resin with glass fibers.In this study, two ways of recycling composites were evaluated, which are microwavepyrolysed composites (MGC) and mechanical composites (GC). These glass fibers weregoing to be compounded with Polypropylene (PP) or Maleic Anhydride ModifiedPolypropylene (MAPP) and then injection moulded the sample by Micro-compounder.In order to get better adhesion to the polymer, a coating was added. The Neoxil 5682-polypropylene water emulsion was evaluated.The samples were characterized by Tensile Testing, Thermogravimetric Analysis (TGA),Different Scanning Calorimetry (DSC), and Dynamic Mechanical Analysis (DMA) to find aoptimum combination of recycled glass fiber reinforced polymer.Microwave pyrolysis is a new research area. The glass fiber, polymer oil and gas can beobtained by heating the composite with microwaves to in an inert atmosphere. The polymeroil can be distillated and then evaluated with GC-MS; in order to obtain the chemicalcompositions.Keywords: Composites, grinded and microwave pyrolyse composites (MGC), grindedcomposites (GC), Polypropylene (PP), Maleic Anhydride Modified Polypropylene (MAPP),Micro-compounder, Tensile Testing, Thermogravimetric Analysis (TGA), Different ScanningCalorimetry (DSC), and Dynamic Mechanical Analysis (DMA), Microwave pyrolysis,polymer oil, distillation, GCMS Analysis. / Program: MSc in Resource Recovery - Sustainable Engineering

Page generated in 0.0803 seconds