• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of New Polysilsesquioxane Spherical Particles as Stabilized Active Ingredients For Sunscreens

Tolbert, Stephanie Helene January 2015 (has links)
Healthy skin is a sign of positive self-worth, attractiveness and vitality. Compromises to this are frequently caused by extended periods of recreation in the sun and in turn exposure to the harmful effects of UV radiation. To maintain strength and integrity, protection of the skin is paramount. This can be achieved by implementing skin-care products which contain sunscreen active ingredients that provide UV protection. Unfortunately, photo-degradation, toxicity, and photo-allergies limit the effectiveness of present day sunscreen ingredients. Currently, this is moderated by physically embedding within inert silica particles, but leaching of the active ingredient can occur, thereby negating protective efforts. Alternatively, this research details the preparation and investigation of bridged silsesquioxane analogues of commercial ingredients which can be chemically grafted to the silica matrix. Studies with bridged salicylate particles detail facile preparation, minimized leaching, and enhanced UV stability over physically encapsulated and pendant salicylate counterparts. In terms of UVB protective ability, the highest maintenance of sun protection factor (SPF) after extended UV exposure was achieved with bridged incorporation, and has been attributed to corollary UV stability. Additionally, bridged salicylate particles can be classified as broad-spectrum, and rate from moderate to good in terms of UVA protective ability. Particles incorporated with a bridged curcuminoid silsesquioxane were also prepared and displayed comparable results. As such, an attractive method for sunscreen isolation and stabilization has been developed to eliminate the problems associated with current sunscreens, all while maintaining the established UV absorbance profiles of the parent compound. To appreciate the technology utilized in this research, a thorough understanding of sol-gel science as it pertains to hybrid organic/silica particles, including methods of organic fragment incorporation and insight on the effect of incorporation method on ingredient leaching and UV stability, is vital. This was afforded by analysis of hybrid fluorescent dansyl particles, prepared by both O/W microemulsion polymerization and a modified Stöber process, which detailed that covalent entrapment of bridged dansyl silsesquioxane is the incorporation method of choice to ensure minimized leaching and enhanced UV stability. As such, use of this method can provide exciting applications in fields where stability and retainment of the embedded ingredient is paramount for efficacy.
2

Development of Conductive Nanocomposite Sensors for Anticipated Diagnostic of Diseases / Développement de senseurs nanocomposites polymères conducteurs pour le diagnostic anticipé de maladies

Nag, Sananda 19 September 2014 (has links)
L'analyse de COV spécifiques dans l'haleine (identifié comme biomarqueurs de maladies telles que lecancer) donne une idée de l’activité métabolique et physiologique d'un individu et peut fournir undiagnostic anticipé non-invasif et potentiellement peu coûteux de plusieurs maladies dont le cancer.Mais avant que des tests médicaux ne puissent devenir une réalité clinique, il est nécessaire dedévelopper une technique d’analyse rapide, fiable, économique et portable. Les réseaux de senseurs(nez électroniques) à base de nanomatériaux qui peuvent satisfaire toutes ces exigences, constituentl’élément clef de l'identification des maladies par leur empreinte de COV dans l'haleine. L'objectif decette thèse est de fabriquer différents senseurs chemo-résistifs à base de nanocomposites conducteursayant la capacité de discriminer un ensemble de maladies (comme le cancer du poumon) par l’analysede leur biomarqueur (COV). Par conséquent, afin de fabriquer des senseurs de haute performance avecune grande sensibilité (ppb) et une sélectivité adaptée aux COV ciblés, différentes méthodologiesd’élaboration de nanocomposites conducteur, ont été implémentées. Des fonctionnalisations covalenteset non-covalentes de ces nanomatériaux de carbone ont été réalisées avec différents types demolécules, i.e., oligomères, polymères ou minérales afin d’ajuster la sélectivité et la sensibilité descapteurs. La nanodéconnection des jonctions du réseau percolé formé par les nanocharges de carbone aainsi pu être contrôlée en faisant varier la fonctionnalité chimique de leur surface. Finalement unensemble de senseurs de vapeur chemorésistifs de hautes performances, ayant une sélectivité pour lesbiomarqueurs du cancer du poumon ont pu être fabriqués et intégrés avec succès dans un nezélectronique.The / The analysis of specific VOC in exhaled breath (identified as biomarkers of specific disease like cancer)give an idea of metabolic and physiological activities of an individual and can provide non-invasive andpotentially inexpensive anticipated diagnosis of several diseases including cancer. The invention of afast, reliable, economic and portable technique is highly required before breath testing become a clinicalreality. Nanomaterial based sensor arrays can fulfill all these requirements and can form a solidfoundation for identification of disease related VOC patterns in exhaled breath. The objective of thisthesis was to fabricate different chemo-resistive sensors based on conductive nanocomposites withability to differentiate and discriminate a set of disease (such as lung cancer) biomarker VOC. Thereforein order to fabricate high performance sensors with high sensitivity and required selectivity towardstargeted VOC, adoption of different methodologies for the synthesis of conductive nanocomposite, wasstrongly emphasized.Covalent and noncovalent functionalizations of these carbon nanomaterials with various oligomeric,polymeric or inorganic molecules were done in order to tune the sensor’s selectivity and sensitivity.Nanoswitching at the junctions of percolated network formed by the carbon nanomaterials could becontrolled by varying the organic functionality on the surface.Finally a set of high performance chemoresistive vapour sensors, with different selectivity towardstargeted lung cancer VOC could be fabricated and successfully integrated in an e-nose with highefficiency towards detection and discrimination of a set of disease specific VOC biomarkers.
3

Synthese von porösen Kohlenstoffmaterialien aus Polysilsesquioxanen für die Anwendung in elektrochemischen Doppelschichtkondensatoren

Meier, Andreas 18 February 2015 (has links) (PDF)
Elektrochemische Doppelschichtkondensatoren (engl. Electrochemical Double-Layer Capacitors, EDLCs) stellen eine zunehmend wichtige Technologie auf dem Markt der elektrischen Energiespeicher dar. Sie zeichnen sich durch die Aufnahmefähigkeit großer Energiemengen, eine hohe Langzeitstabilität und ein schnelles Ansprechverhalten aus. Diese Eigenschaften sind Gründe, weshalb EDLCs als Speicherbausteine für Energierück-gewinnungssysteme oder zur Stabilisierung der Stromversorgung in diversen elektronischen Bauelementen eingesetzt werden. Die Aufnahme der Energie erfolgt über Ladungsseparation von Elektrolytionen an der Elektrodenoberfläche. Die Kapazität der Speicherfähigkeit wird dabei maßgeblich vom Betrag der Elektrodenoberfläche und dem Abstand der Elektrolytionen zur Oberfläche der Elektrode bestimmt (bei gleichbleibendem Elektrolyten). In der gegenwärtigen Forschung werden neue Elektrodenmaterialien entwickelt, um über deren Systemeigenschaften, wie Leitfähigkeit und Porosität, die Leistungsfähigkeit der Doppelschichtkondensatoren weiter zu optimieren. Gängige Komponenten für Elektroden in diesen Bauelementen stellen Kohlenstoffmaterialien dar, da diese chemisch inert und zumeist kostengünstig in der Produktion sind. In der vorliegenden Arbeit sollte die Eignung der Materialklasse der Siliziumoxykarbid-abgeleiteten Kohlenstoffe (engl. Silicon Oxycarbide-Derived Carbons, SiOCDCs) für die Anwendung in elektrochemischen Doppelschichtkondensatoren untersucht werden. Die SiOCDCs wurden über die Pyrolyse (700 – 1500 °C) und Chlorierung (700 – 1000 °C) eines kohlenstoffreichen Polysilsesquioxans mit der theoretischen Zusammensetzung C6H5SiO3/2 erzeugt. Dabei zeigte sich, dass sowohl die porösen Eigenschaften als auch die Leitfähigkeit innerhalb der erhaltenen Kohlenstoffmaterialien stark von der Synthesetemperatur abhängen. Somit konnten reine Kohlenstoffe mit spezifischen Oberflächen bis zu 2400 m2 g-1 und Porenvolumina von 1,9 cm3 g-1 synthetisiert werden. Im Verlauf der Arbeit wurde eine geeignete Methode zur Verarbeitung der erzeugten Oxykarbid-abgeleiteten Kohlenstoffe zu Elektroden evaluiert, um eine elektrochemische Charakterisierung vorzunehmen. Ein vielversprechender Ansatz stellt die vollkommen trockene Umsetzung der SiOCDCs zu freistehenden Elektrodenschichten dar. Dieses Verfahren nutzt die Verreibung der Aktivkomponente mit einem geringen Anteil (5 Gew.-%) eines Bindemittels (Polytetrafluorethylen, PTFE) aus, um flexible und selbsttragende Elektrodenfolien zu erzeugen. Die Vorteile dieses Prozesses gegenüber anderen Verarbeitungsarten liegen darin, dass aufwendige Trocknungsverfahren während der Elektrodenherstellung entfallen und die Schichtdicken der resultierenden Folien unmittelbar eingestellt werden können. Während der Untersuchung der unterschiedlichen Elektrodensysteme im organischen Elektrolyten (1 M Tetraethylammoniumtetrafluoroborat-Lösung in Acetonitril) konnten spezifische Kapazitäten von bis zu 120 F g-1 gemessen werden. Des Weiteren zeigte sich der Einfluss der Kohlenstoffstruktur innerhalb der Aktivmaterialien auf die elektrochemischen Resultate. So konnte festgestellt werden, dass eine zunehmende Graphitisierung im Kohlenstoff, welche mit einer steigenden Mesoporosität im SiOCDC einherging, zu einer verbesserten Leitfähigkeit innerhalb der EDLC-Elektroden führte, aber auch eine Verringerung der spezifischen Kapazität bedeutete. Die Verringerung der Widerstände im System weitete erheblich den Bereich der nutzbaren Arbeitsfrequenzen und die Strombelastbarkeit des Elektrodenmaterials aus. So bestand die Möglichkeit ein mesoporöses Kohlenstoffmaterial zu synthetisieren, welches mit einer maximalen Arbeitsfrequenz von 8 Hz einen Wert zeigte, der zwei Größenordnungen über der Arbeitsfrequenz eines kommerziell erhältlichen Standards (Aktivkohle YP-50F) lag. Dieses exzellente Ansprechverhalten bildet die Grundlage für den Einsatz in Hochleistungsspeichersystemen. Des Weiteren offenbarte sich, dass die trocken prozessierten Elektroden das Potential für eine hohe Langzeitstabilität besitzen, da je nach Elektrodensystem ein Erhalt von 94% der Ursprungskapazität über 10.000 Lade-/Entladezyklen beobachtet werden konnte. Die Modifikation der Elektrodenmaterialien mittels CO2-Aktivierung und eine damit verbundene Erhöhung der spezifischen Oberfläche führten zu einer Verbesserung der spezifischen Kapazität der Aktivkomponenten um bis zu 33%. Zusammenfassend bleibt zu erwähnen, dass poröse Oxykarbid-abgeleitete Kohlenstoffe erfolgreich über die Chlorierung von keramischen Vorläuferverbindungen synthetisiert werden konnten. Die Kohlenstoffmaterialien zeigten nach der Prozessierung zu freistehenden und flexiblen Elektrodenfilmen vielversprechende Eigenschaften bei der Nutzung in elektrochemischen Doppelschichtkondensatoren, wie hohe spezifische Kapazitäten, gute Langzeitstabilitäten und hohe Arbeitsfrequenzen bei Lade- und Entladevorgängen.
4

Synthese von porösen Kohlenstoffmaterialien aus Polysilsesquioxanen für die Anwendung in elektrochemischen Doppelschichtkondensatoren

Meier, Andreas 20 January 2015 (has links)
Elektrochemische Doppelschichtkondensatoren (engl. Electrochemical Double-Layer Capacitors, EDLCs) stellen eine zunehmend wichtige Technologie auf dem Markt der elektrischen Energiespeicher dar. Sie zeichnen sich durch die Aufnahmefähigkeit großer Energiemengen, eine hohe Langzeitstabilität und ein schnelles Ansprechverhalten aus. Diese Eigenschaften sind Gründe, weshalb EDLCs als Speicherbausteine für Energierück-gewinnungssysteme oder zur Stabilisierung der Stromversorgung in diversen elektronischen Bauelementen eingesetzt werden. Die Aufnahme der Energie erfolgt über Ladungsseparation von Elektrolytionen an der Elektrodenoberfläche. Die Kapazität der Speicherfähigkeit wird dabei maßgeblich vom Betrag der Elektrodenoberfläche und dem Abstand der Elektrolytionen zur Oberfläche der Elektrode bestimmt (bei gleichbleibendem Elektrolyten). In der gegenwärtigen Forschung werden neue Elektrodenmaterialien entwickelt, um über deren Systemeigenschaften, wie Leitfähigkeit und Porosität, die Leistungsfähigkeit der Doppelschichtkondensatoren weiter zu optimieren. Gängige Komponenten für Elektroden in diesen Bauelementen stellen Kohlenstoffmaterialien dar, da diese chemisch inert und zumeist kostengünstig in der Produktion sind. In der vorliegenden Arbeit sollte die Eignung der Materialklasse der Siliziumoxykarbid-abgeleiteten Kohlenstoffe (engl. Silicon Oxycarbide-Derived Carbons, SiOCDCs) für die Anwendung in elektrochemischen Doppelschichtkondensatoren untersucht werden. Die SiOCDCs wurden über die Pyrolyse (700 – 1500 °C) und Chlorierung (700 – 1000 °C) eines kohlenstoffreichen Polysilsesquioxans mit der theoretischen Zusammensetzung C6H5SiO3/2 erzeugt. Dabei zeigte sich, dass sowohl die porösen Eigenschaften als auch die Leitfähigkeit innerhalb der erhaltenen Kohlenstoffmaterialien stark von der Synthesetemperatur abhängen. Somit konnten reine Kohlenstoffe mit spezifischen Oberflächen bis zu 2400 m2 g-1 und Porenvolumina von 1,9 cm3 g-1 synthetisiert werden. Im Verlauf der Arbeit wurde eine geeignete Methode zur Verarbeitung der erzeugten Oxykarbid-abgeleiteten Kohlenstoffe zu Elektroden evaluiert, um eine elektrochemische Charakterisierung vorzunehmen. Ein vielversprechender Ansatz stellt die vollkommen trockene Umsetzung der SiOCDCs zu freistehenden Elektrodenschichten dar. Dieses Verfahren nutzt die Verreibung der Aktivkomponente mit einem geringen Anteil (5 Gew.-%) eines Bindemittels (Polytetrafluorethylen, PTFE) aus, um flexible und selbsttragende Elektrodenfolien zu erzeugen. Die Vorteile dieses Prozesses gegenüber anderen Verarbeitungsarten liegen darin, dass aufwendige Trocknungsverfahren während der Elektrodenherstellung entfallen und die Schichtdicken der resultierenden Folien unmittelbar eingestellt werden können. Während der Untersuchung der unterschiedlichen Elektrodensysteme im organischen Elektrolyten (1 M Tetraethylammoniumtetrafluoroborat-Lösung in Acetonitril) konnten spezifische Kapazitäten von bis zu 120 F g-1 gemessen werden. Des Weiteren zeigte sich der Einfluss der Kohlenstoffstruktur innerhalb der Aktivmaterialien auf die elektrochemischen Resultate. So konnte festgestellt werden, dass eine zunehmende Graphitisierung im Kohlenstoff, welche mit einer steigenden Mesoporosität im SiOCDC einherging, zu einer verbesserten Leitfähigkeit innerhalb der EDLC-Elektroden führte, aber auch eine Verringerung der spezifischen Kapazität bedeutete. Die Verringerung der Widerstände im System weitete erheblich den Bereich der nutzbaren Arbeitsfrequenzen und die Strombelastbarkeit des Elektrodenmaterials aus. So bestand die Möglichkeit ein mesoporöses Kohlenstoffmaterial zu synthetisieren, welches mit einer maximalen Arbeitsfrequenz von 8 Hz einen Wert zeigte, der zwei Größenordnungen über der Arbeitsfrequenz eines kommerziell erhältlichen Standards (Aktivkohle YP-50F) lag. Dieses exzellente Ansprechverhalten bildet die Grundlage für den Einsatz in Hochleistungsspeichersystemen. Des Weiteren offenbarte sich, dass die trocken prozessierten Elektroden das Potential für eine hohe Langzeitstabilität besitzen, da je nach Elektrodensystem ein Erhalt von 94% der Ursprungskapazität über 10.000 Lade-/Entladezyklen beobachtet werden konnte. Die Modifikation der Elektrodenmaterialien mittels CO2-Aktivierung und eine damit verbundene Erhöhung der spezifischen Oberfläche führten zu einer Verbesserung der spezifischen Kapazität der Aktivkomponenten um bis zu 33%. Zusammenfassend bleibt zu erwähnen, dass poröse Oxykarbid-abgeleitete Kohlenstoffe erfolgreich über die Chlorierung von keramischen Vorläuferverbindungen synthetisiert werden konnten. Die Kohlenstoffmaterialien zeigten nach der Prozessierung zu freistehenden und flexiblen Elektrodenfilmen vielversprechende Eigenschaften bei der Nutzung in elektrochemischen Doppelschichtkondensatoren, wie hohe spezifische Kapazitäten, gute Langzeitstabilitäten und hohe Arbeitsfrequenzen bei Lade- und Entladevorgängen.
5

Fractionation of natural organic matter (NOM) in water using prepared porous silica based materials as size exclusion (SEC)/GEL permeation chromatography (GPC) stationary phases

Bopape, Dineo Anna 06 1900 (has links)
Natural organic matter (NOM) is a diverse blend of decomposed animal and plant material found in different natural water sources. Due to its large and complex structure, NOM is difficult to both remove and characterize in water. Therefore, there is a need to separate NOM into its components before it can be characterized. The aim of this project was to fractionate NOM through a novel size exclusion chromatography (SEC) composite (poly (styrene-divinyl benzene) (PS-DVB) and Polysilsesquioxane (PSQ)) packed column. Raw and final water samples from Mid-Vaal (MV), Olifantspoort (LO), Mtwalume (MT) and Preekstoel (P) were investigated. Poly (styrene-divinyl benzene) (PS-DVB) and polysilsesquioxane were both synthesized and optimized at various temperatures, compositions and time periods. An end-capping material such as hexamethyldisilizane (HMDS) was added on the PSQ to prevent active silanol groups on the polysilsesquioxane (PSQ) from reacting with active sites of NOM (our analyte). The E-PSQ (end-capped PSQ) and PS-DVB materials were packed in eight different SPE cartridges first, before the materials could be packed in the SEC column. This packing was done to check for the best mass composition of the E-PSQ and PS-DVB. From the obtained SPE results, both the EPSQ and PS-DVB were packed in one SEC/GPC column at a ratio of 1:1 in order to form the composite hybrid material. The packed SEC column was connected to an HPLC instrument and various column efficiency tests were evaluated. The results for the test of interactions with acidic compounds implied that the column can be used for the acidic analytes such as those forming NOM composition (humic acids, fulvic acids) and the column had minimum silanol groups. For hydrophobic interactions the stationary phase strength was different to that of the commercial columns and it could selectively elute molecules based on their different masses. The steric selectivity test showed that the stationary phase could separate and distinguish between molecules with similar hydrophobicity and structure but different shapes (o-terphenyl and triphenylene). The Hydrogen bonding capacity (HBC) test showed that the column had minimum silanol groups and the end-capping was successful on the E-PSQ. After fractionation of all the water samples, the MT raw showed NOM peaks around 1.8 mins, 3.4 mins and 5.3, and the final showed NOM peaks around 1.8 mins and 5.5 mins. The Mid-Vaal (MV) raw and final samples shows NOM peaks at around 1.8 mins and 6 mins. The Preekstoel (P) final water had one NOM peak at around 1.8 mins and raw samples had two NOM peaks around 1.8 mins and 6 mins. / Chemistry / M. Sc. (Chemistry)

Page generated in 0.0676 seconds