• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Pore Development in Silicon Oxycarbide Ceramics to Understand the Microstructural Evolution

Erb, Donald Joseph 22 August 2018 (has links)
Silicon oxycarbide (SiOC) is a ceramic obtained through the heating of a polymer precursor, which undergoes partial decomposition to go from an organic polymer to an inorganic ceramic. The microstructure of SiOC is not uniform at the nanometer scale, and contains nanometer sized silicon dioxide, carbon, and silicon carbide. Porous SiOC has shown great promise in applications such as lithium ion batteries, gas separation, and thermal barriers. The microstructure, and thus the properties of the SiOC, is influenced by the initial polymer and the processing conditions. In this thesis, SiOC is fabricated using a base polysiloxane polymer using different gases during heating, different additives that change the initial polymer chemical composition or polymer shape, and polymers with different reactive groups. Porosity was introduced into the SiOC ceramics through either etching the SiOC with hydrofluoric acid, which removes the silicon dioxide and produces pores with diameters less than 20 nanometers, or through decomposition during heating of a certain polymer in a two polymer mixture, producing pores that are dozens of microns in diameter. The effects of the processing parameters on the porosity and pore size are used to understand the differences in the microstructure during pyrolysis. / Master of Science / Silicon oxycarbide (SiOC) is a ceramic obtained through the heating of a polymer precursor, which undergoes partial decomposition to go from an organic polymer to an inorganic ceramic. The microstructure of SiOC is not uniform at the nanometer scale, and contains nanometer sized silicon dioxide, carbon, and silicon carbide. Porous SiOC has shown great promise in applications such as lithium ion batteries, gas separation, and thermal barriers. The microstructure, and thus the properties of the SiOC, is influenced by the initial polymer and the processing conditions. In this thesis, SiOC is fabricated using a base polysiloxane polymer using different gases during heating, different additives that change the initial polymer chemical composition or polymer shape, and polymers with different reactive groups. Porosity was introduced into the SiOC ceramics through either etching the SiOC with hydrofluoric acid, which removes the silicon dioxide and produces pores with diameters less than 20 nanometers, or through decomposition during heating of a certain polymer in a two polymer mixture, producing pores that are dozens of microns in diameter. The effects of the processing parameters on the porosity and pore size are used to understand the differences in the microstructure during pyrolysis.
2

Boron nitride nanotube-modified silicon oxycarbide ceramic composite: synthesis, characterization and applications in electrochemical energy storage

Abass, Monsuru A. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Gurpreet Singh / Polymer-derived ceramics (PDCs) such as silicon oxycarbide (SiOC) have shown promise as an electrode material for rechargeable Li-ion batteries (LIBs) owing to the synergy between its disordered carbon phase and hybrid bonds of silicon with oxygen and carbon. In addition to their unique structure, PDCs are known for their high surface area (~822.7 m² g⁻¹), which makes them potential candidates for supercapacitor applications. However, low electrical conductivity, voltage hysteresis, and first cycle lithium irreversibility have hindered their introduction into commercial devices. One approach to improving charge storage capacity is by interfacing the preceramic polymer with boron or aluminium prior pyrolysis. Recent research has shown that chemical interfacing with elemental boron, bulk boron powders and even exfoliated sheets of boron nitride leads to enhancements in thermal and electronic properties of the ceramic. This thesis reports the synthesis of a new type of PDC composite comprising of SiOC embedded with boron nitride nanotubes (BNNTs). This was achieved through the introduction of BNNT in SiOC pre-ceramic polymer at varying wt.% loading (0.25, 0.5 and 2.0 wt.%) followed by thermolysis at high temperature. Electron microscopy and a range of spectroscopy techniques were employed to confirm the polymer-to-ceramic transformation and presence of disordered carbon phase. Transmission electron microscopy confirmed the tubular morphology of BNNT in the composite. To test the material for electrochemical applications, the powders were then made into free-standing paper-like electrodes with reduced graphene oxide (rGO) acting as support material. The synthesized free-standing electrodes were characterized and tested as electrochemical energy storage materials for LIBs and symmetric supercapacitor applications. Among the SiOC-BNNT composite paper tested as anode materials for LIBs, the 0.25 wt.% BNNT composite paper demonstrated the highest first cycle lithiation capacity corresponding to 812 mAh g⁻¹ (at a current density of 100 mA g⁻¹) with a stable charge capacity of 238 mAh g⁻¹ when asymmetrically cycled after 25 cycles. On the contrary, the 0.5 wt.% BNNT composite paper demonstrated the highest specific capacitance corresponding to 78.93 F g⁻¹ at a current density of 1 A g⁻¹ and a cyclic retention of 86% after 185 cycles. This study shows that the free carbon content of SiOC-BNNT ceramic composite can be rationally modified by varying the wt.% of BNNT. As such, the paper composite can be used as an electrode material for electrochemical energy storage.
3

Estudos em materiais vitreos e/ou ceramicos de SiCxOy e/ou SiC enriquecidos com fase dispersa de carbono / Studies in vitreous and/or ceramic materials based on SiCxOy and/or SiC enriched with dispersed carbon

Segatelli, Mariana Gava 10 July 2008 (has links)
Orientador: Inez Valeria Pagotto Yoshida / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-12T12:33:20Z (GMT). No. of bitstreams: 1 Segatelli_MarianaGava_D.pdf: 6527296 bytes, checksum: 894b8cf377317b78d905bf778e5f743e (MD5) Previous issue date: 2008 / Resumo: Este projeto envolveu a obtenção de materiais vítreos e/ou cerâmicos de SiCxOy e/ou SiC enriquecidos com carbono pela pirólise de precursores poliméricos híbridos, na presença e na ausência de acetato de níquel (NiAc). Os precursores poliméricos com e sem NiAc foram preparados por reação de hidrossililação entre poli(metilsiloxano) (PMS) e divinilbenzeno (DVB), em diferentes composições. Além destes precursores, nanotubos de carbono (NTC) foram incorporados ao precursor polimérico PMS/DVB e submetidos a um tratamento térmico a 1500°C em diferentes tempos. A estabilidade térmica e o rendimento cerâmico dos precursores foram analisados por TGA e a conversão polímero-cerâmica foi monitorada por XRD e espectros IR, C e Si NMR e Raman, além de análise elementar e medidas de densidade. A porosidade e a morfologia destes materiais também foram avaliadas. A composição do precursor polimérico influenciou a quantidade de carbono total nas cerâmicas resultantes, aumentando com a quantidade de DVB incorporada no precursor. O efeito da composição foi mais acentuado nas cerâmicas contendo Ni. Além disso, a incorporação de Ni aos precursores poliméricos promoveu alterações marcantes na estrutura e morfologia das cerâmicas, particularmente com relação à cristalização e a intensa carborredução, o que refletiu no aumento da densidade destes materiais devido à maior contribuição da fase cristalina b-SiC. A presença de Ni também contribuiu para a formação de nanofios retos e curvos contendo Si, O e C, principalmente na superfície dos corpos cerâmicos, apresentando diferentes composições em função de seus formatos. O aumento da temperatura de 950 a 1500°C favoreceu uma série de transformações estruturais nestes materiais, em especial, a organização da fase de Clivre dispersa na matriz cerâmica. A presença de NTC, como fonte extra de carbono, no precursor polimérico favoreceu a formação das fases de cristobalita e de b-SiC nas cerâmicas e o aumento da quantidade de defeitos na fase dispersa de Clivre. Para estas amostras, observou-se um processo de organização dos nanodomínios de carbono com o aumento do tempo de aquecimento a 1500°C, além de uma morfologia distinta das correspondentes cerâmicas obtidas na ausência dos NTC. / Abstract: In this study, vitreous and/or ceramic materials based on SiCxOy and/or SiC enriched with carbon were obtained by pyrolysis of hybrid polymeric precursors, in the presence or not of nickel acetate (NiAc). The polymeric precursors with and without NiAc were prepared by hydrosilylation reaction between poly(methylsiloxane) (PMS) and divinylbenzene (DVB), in different compositions. Apart from these precursors, carbon nanotubes (CNT) were added to the PMS/DVB precursor and submitted to thermal treatment at 1500°C in different times. The thermal stability and the ceramic yield of the precursors were analyzed by TGA and the polymer to ceramic conversion was monitored by XRD and IR, C and Si NMR and Raman spectra, elemental analysis and density measurements. The porosity and morphology of these materials were also evaluated. The polymeric precursor composition influenced the total carbon amount in the resulting ceramics, increasing with the DVB amount added to precursor. The effect of composition was more pronounced in the Ni-containing ceramics. In addition, the presence of Ni in the polymeric precursors promoted remarkable changes in the structure and morphology of the ceramics, particularly in relation to the crystallization and carboreduction, resulting in denser materials due to contribution of b-SiC crystalline phase. The introduction of Ni also contributed to the formation of straight and curved nanowires, mainly on the surface of the ceramic bodies, which presented different compositions according to their shapes. The increase of temperature from 950 to 1500°C promoted continuous structural transformations, leading to ordering process of Cfree phase dispersed in the ceramic matrix. The presence of CNT, used as an extra carbon source, in the polymeric precursor promoted the formation of cristobalite and b-SiC phases and the increase of defects in the Cfree phase presents in the ceramics. In the CNT-containing ceramics, the increase of the annealing time at 1500°C resulted in an ordering process of carbon nanodomains and a different morphology of the corresponding ceramics obtained without CNT. / Doutorado / Quimica Inorganica / Doutor em Ciências
4

Fundamental Understanding and Functionality of Silicon Oxycarbide

Yang, Ni 07 January 2021 (has links)
Silicon oxycarbide (SiOC) is a unique polymer-derived ceramic (PDC) containing silicon, oxygen, and carbon atoms in the form of an amorphous network structure. The phase separation of SiOC is determined by polymeric precursors, pyrolysis temperatures, and atmosphere, which results in different compositions and microstructures. Because of its unique properties (high thermal stability, corrosion resistance, among others), SiOC has numerous applications in fields such as additive manufacturing, lithium-ion batteries, and advanced optics. In the SiOC system, SiO2 nanoclusters can be removed through the etching process, to create nanopores for increasing the surface area. By introducing the SiO2-forming filler (perhydropolysilazane) into SiOC, more SiO2 nanodomains with an average size of 1.72 nm were generated for an ultrahigh surface area of ~2100 m2/g material. Meanwhile, the distributions of domain wall thickness and pore distribution can be calculated by our modified model, to further understand the pore formation. The formation of porous SiOC ceramics with ultrahigh surface areas is greatly desired in numerous applications. Transition metal-containing SiOC composites have more functional properties over pure SiOC and receive more attention in different areas. High-temperature resistant TiC/SiOC was successfully synthesized by pyrolysis of polysiloxane (PSO) and titanium isopropoxide at 1200-1400 °C in argon. It had the first reported conductivity of >1000 S/m for TiC/SiOC ceramics. Nickel-containing SiOC magnetoceramics with soft ferromagnetism was fabricated from a base PSO with the addition of nickel 2,4‐pentanedionate. The effect of water vapor on the phase evolution of Ni/SiOC composites was studied at different pyrolysis temperatures, and the formation of nickel silicides was suppressed by the effect of water vapor during the pyrolysis. Our investigation showed the catalysts from transition metals induced the generation of metal silicides, silicon carbide, and turbostratic carbon with the catalytic activity corresponding to Fe > Co > Ni, which agrees with the activation energy calculation. Also, the phase separation of SiOC was proved to be predominant than local carbothermal reduction. In addition to these findings, a novel approach was developed through the Gibbs free energy minimization method to predict the phase content in PDCs with transition metal additives. And this work provides useful guidance to fabricate the transition metal-containing SiOCs with the desired phase content. Last, the state-of-the-art 4D-STEM technique, collaborated with Lawrence Berkeley National Laboratory, was applied to SiOC ceramics containing amorphous phase. The results showed that 4D-STEM is a valid approach to characterize the nanostructure of the amorphous phase as well as the crystallites. It solves the problem of analyzing SiOC materials at nanoscale due to the disordered atomic arrangement and properties. / Doctor of Philosophy / With the development of science and technology, some novel ceramics have begun to attract attention and become alternatives, such as polymer-derived ceramics (PDCs), due to more advantages over traditional ceramics. Silicon oxycarbide (SiOC) is the main part of the PDC family and possessing good combined thermophysical and mechanical properties. Highly porous SiOC ceramic has broad applications in the fields of catalyst, filters, and thermal insulation. A novel preparation to synthesize SiOC with a specific surface area above 2000 m2/g was investigated. Adding transition metals into the SiOC system can enlarge its application potentials to some extent. The bright spot of nickel-containing SiOC (Ni/SiOC) composites is in the magnetic area. Ni/SiOC composites show soft ferromagnetism and can be used as magnetic sensors, transformers, and so on. In this dissertation, the effect of water vapor on the phase evolution of Ni/SiOC was illustrated. The fabrication of high-temperature-resistant Ti/SiOC composite with large than 1000 S/m conductivity was studied. To further uncover the influence of transition metals on SiOC ceramics, the effects of transition metals on the phase and microstructure evolution of polysiloxane-derived SiOC ceramics were deeply demonstrated. A novel method was even developed to predict the phase content in SiOC ceramic with different transition metals. By working with Lawrence Berkeley National Laboratory, the nanoscale structures of SiOC ceramic was studied using state-of-the-art 4D-STEM. The findings of this dissertation shed light on more potential applications for SiOC ceramics in the future.
5

Synthese von porösen Kohlenstoffmaterialien aus Polysilsesquioxanen für die Anwendung in elektrochemischen Doppelschichtkondensatoren

Meier, Andreas 18 February 2015 (has links) (PDF)
Elektrochemische Doppelschichtkondensatoren (engl. Electrochemical Double-Layer Capacitors, EDLCs) stellen eine zunehmend wichtige Technologie auf dem Markt der elektrischen Energiespeicher dar. Sie zeichnen sich durch die Aufnahmefähigkeit großer Energiemengen, eine hohe Langzeitstabilität und ein schnelles Ansprechverhalten aus. Diese Eigenschaften sind Gründe, weshalb EDLCs als Speicherbausteine für Energierück-gewinnungssysteme oder zur Stabilisierung der Stromversorgung in diversen elektronischen Bauelementen eingesetzt werden. Die Aufnahme der Energie erfolgt über Ladungsseparation von Elektrolytionen an der Elektrodenoberfläche. Die Kapazität der Speicherfähigkeit wird dabei maßgeblich vom Betrag der Elektrodenoberfläche und dem Abstand der Elektrolytionen zur Oberfläche der Elektrode bestimmt (bei gleichbleibendem Elektrolyten). In der gegenwärtigen Forschung werden neue Elektrodenmaterialien entwickelt, um über deren Systemeigenschaften, wie Leitfähigkeit und Porosität, die Leistungsfähigkeit der Doppelschichtkondensatoren weiter zu optimieren. Gängige Komponenten für Elektroden in diesen Bauelementen stellen Kohlenstoffmaterialien dar, da diese chemisch inert und zumeist kostengünstig in der Produktion sind. In der vorliegenden Arbeit sollte die Eignung der Materialklasse der Siliziumoxykarbid-abgeleiteten Kohlenstoffe (engl. Silicon Oxycarbide-Derived Carbons, SiOCDCs) für die Anwendung in elektrochemischen Doppelschichtkondensatoren untersucht werden. Die SiOCDCs wurden über die Pyrolyse (700 – 1500 °C) und Chlorierung (700 – 1000 °C) eines kohlenstoffreichen Polysilsesquioxans mit der theoretischen Zusammensetzung C6H5SiO3/2 erzeugt. Dabei zeigte sich, dass sowohl die porösen Eigenschaften als auch die Leitfähigkeit innerhalb der erhaltenen Kohlenstoffmaterialien stark von der Synthesetemperatur abhängen. Somit konnten reine Kohlenstoffe mit spezifischen Oberflächen bis zu 2400 m2 g-1 und Porenvolumina von 1,9 cm3 g-1 synthetisiert werden. Im Verlauf der Arbeit wurde eine geeignete Methode zur Verarbeitung der erzeugten Oxykarbid-abgeleiteten Kohlenstoffe zu Elektroden evaluiert, um eine elektrochemische Charakterisierung vorzunehmen. Ein vielversprechender Ansatz stellt die vollkommen trockene Umsetzung der SiOCDCs zu freistehenden Elektrodenschichten dar. Dieses Verfahren nutzt die Verreibung der Aktivkomponente mit einem geringen Anteil (5 Gew.-%) eines Bindemittels (Polytetrafluorethylen, PTFE) aus, um flexible und selbsttragende Elektrodenfolien zu erzeugen. Die Vorteile dieses Prozesses gegenüber anderen Verarbeitungsarten liegen darin, dass aufwendige Trocknungsverfahren während der Elektrodenherstellung entfallen und die Schichtdicken der resultierenden Folien unmittelbar eingestellt werden können. Während der Untersuchung der unterschiedlichen Elektrodensysteme im organischen Elektrolyten (1 M Tetraethylammoniumtetrafluoroborat-Lösung in Acetonitril) konnten spezifische Kapazitäten von bis zu 120 F g-1 gemessen werden. Des Weiteren zeigte sich der Einfluss der Kohlenstoffstruktur innerhalb der Aktivmaterialien auf die elektrochemischen Resultate. So konnte festgestellt werden, dass eine zunehmende Graphitisierung im Kohlenstoff, welche mit einer steigenden Mesoporosität im SiOCDC einherging, zu einer verbesserten Leitfähigkeit innerhalb der EDLC-Elektroden führte, aber auch eine Verringerung der spezifischen Kapazität bedeutete. Die Verringerung der Widerstände im System weitete erheblich den Bereich der nutzbaren Arbeitsfrequenzen und die Strombelastbarkeit des Elektrodenmaterials aus. So bestand die Möglichkeit ein mesoporöses Kohlenstoffmaterial zu synthetisieren, welches mit einer maximalen Arbeitsfrequenz von 8 Hz einen Wert zeigte, der zwei Größenordnungen über der Arbeitsfrequenz eines kommerziell erhältlichen Standards (Aktivkohle YP-50F) lag. Dieses exzellente Ansprechverhalten bildet die Grundlage für den Einsatz in Hochleistungsspeichersystemen. Des Weiteren offenbarte sich, dass die trocken prozessierten Elektroden das Potential für eine hohe Langzeitstabilität besitzen, da je nach Elektrodensystem ein Erhalt von 94% der Ursprungskapazität über 10.000 Lade-/Entladezyklen beobachtet werden konnte. Die Modifikation der Elektrodenmaterialien mittels CO2-Aktivierung und eine damit verbundene Erhöhung der spezifischen Oberfläche führten zu einer Verbesserung der spezifischen Kapazität der Aktivkomponenten um bis zu 33%. Zusammenfassend bleibt zu erwähnen, dass poröse Oxykarbid-abgeleitete Kohlenstoffe erfolgreich über die Chlorierung von keramischen Vorläuferverbindungen synthetisiert werden konnten. Die Kohlenstoffmaterialien zeigten nach der Prozessierung zu freistehenden und flexiblen Elektrodenfilmen vielversprechende Eigenschaften bei der Nutzung in elektrochemischen Doppelschichtkondensatoren, wie hohe spezifische Kapazitäten, gute Langzeitstabilitäten und hohe Arbeitsfrequenzen bei Lade- und Entladevorgängen.
6

Synthese von porösen Kohlenstoffmaterialien aus Polysilsesquioxanen für die Anwendung in elektrochemischen Doppelschichtkondensatoren

Meier, Andreas 20 January 2015 (has links)
Elektrochemische Doppelschichtkondensatoren (engl. Electrochemical Double-Layer Capacitors, EDLCs) stellen eine zunehmend wichtige Technologie auf dem Markt der elektrischen Energiespeicher dar. Sie zeichnen sich durch die Aufnahmefähigkeit großer Energiemengen, eine hohe Langzeitstabilität und ein schnelles Ansprechverhalten aus. Diese Eigenschaften sind Gründe, weshalb EDLCs als Speicherbausteine für Energierück-gewinnungssysteme oder zur Stabilisierung der Stromversorgung in diversen elektronischen Bauelementen eingesetzt werden. Die Aufnahme der Energie erfolgt über Ladungsseparation von Elektrolytionen an der Elektrodenoberfläche. Die Kapazität der Speicherfähigkeit wird dabei maßgeblich vom Betrag der Elektrodenoberfläche und dem Abstand der Elektrolytionen zur Oberfläche der Elektrode bestimmt (bei gleichbleibendem Elektrolyten). In der gegenwärtigen Forschung werden neue Elektrodenmaterialien entwickelt, um über deren Systemeigenschaften, wie Leitfähigkeit und Porosität, die Leistungsfähigkeit der Doppelschichtkondensatoren weiter zu optimieren. Gängige Komponenten für Elektroden in diesen Bauelementen stellen Kohlenstoffmaterialien dar, da diese chemisch inert und zumeist kostengünstig in der Produktion sind. In der vorliegenden Arbeit sollte die Eignung der Materialklasse der Siliziumoxykarbid-abgeleiteten Kohlenstoffe (engl. Silicon Oxycarbide-Derived Carbons, SiOCDCs) für die Anwendung in elektrochemischen Doppelschichtkondensatoren untersucht werden. Die SiOCDCs wurden über die Pyrolyse (700 – 1500 °C) und Chlorierung (700 – 1000 °C) eines kohlenstoffreichen Polysilsesquioxans mit der theoretischen Zusammensetzung C6H5SiO3/2 erzeugt. Dabei zeigte sich, dass sowohl die porösen Eigenschaften als auch die Leitfähigkeit innerhalb der erhaltenen Kohlenstoffmaterialien stark von der Synthesetemperatur abhängen. Somit konnten reine Kohlenstoffe mit spezifischen Oberflächen bis zu 2400 m2 g-1 und Porenvolumina von 1,9 cm3 g-1 synthetisiert werden. Im Verlauf der Arbeit wurde eine geeignete Methode zur Verarbeitung der erzeugten Oxykarbid-abgeleiteten Kohlenstoffe zu Elektroden evaluiert, um eine elektrochemische Charakterisierung vorzunehmen. Ein vielversprechender Ansatz stellt die vollkommen trockene Umsetzung der SiOCDCs zu freistehenden Elektrodenschichten dar. Dieses Verfahren nutzt die Verreibung der Aktivkomponente mit einem geringen Anteil (5 Gew.-%) eines Bindemittels (Polytetrafluorethylen, PTFE) aus, um flexible und selbsttragende Elektrodenfolien zu erzeugen. Die Vorteile dieses Prozesses gegenüber anderen Verarbeitungsarten liegen darin, dass aufwendige Trocknungsverfahren während der Elektrodenherstellung entfallen und die Schichtdicken der resultierenden Folien unmittelbar eingestellt werden können. Während der Untersuchung der unterschiedlichen Elektrodensysteme im organischen Elektrolyten (1 M Tetraethylammoniumtetrafluoroborat-Lösung in Acetonitril) konnten spezifische Kapazitäten von bis zu 120 F g-1 gemessen werden. Des Weiteren zeigte sich der Einfluss der Kohlenstoffstruktur innerhalb der Aktivmaterialien auf die elektrochemischen Resultate. So konnte festgestellt werden, dass eine zunehmende Graphitisierung im Kohlenstoff, welche mit einer steigenden Mesoporosität im SiOCDC einherging, zu einer verbesserten Leitfähigkeit innerhalb der EDLC-Elektroden führte, aber auch eine Verringerung der spezifischen Kapazität bedeutete. Die Verringerung der Widerstände im System weitete erheblich den Bereich der nutzbaren Arbeitsfrequenzen und die Strombelastbarkeit des Elektrodenmaterials aus. So bestand die Möglichkeit ein mesoporöses Kohlenstoffmaterial zu synthetisieren, welches mit einer maximalen Arbeitsfrequenz von 8 Hz einen Wert zeigte, der zwei Größenordnungen über der Arbeitsfrequenz eines kommerziell erhältlichen Standards (Aktivkohle YP-50F) lag. Dieses exzellente Ansprechverhalten bildet die Grundlage für den Einsatz in Hochleistungsspeichersystemen. Des Weiteren offenbarte sich, dass die trocken prozessierten Elektroden das Potential für eine hohe Langzeitstabilität besitzen, da je nach Elektrodensystem ein Erhalt von 94% der Ursprungskapazität über 10.000 Lade-/Entladezyklen beobachtet werden konnte. Die Modifikation der Elektrodenmaterialien mittels CO2-Aktivierung und eine damit verbundene Erhöhung der spezifischen Oberfläche führten zu einer Verbesserung der spezifischen Kapazität der Aktivkomponenten um bis zu 33%. Zusammenfassend bleibt zu erwähnen, dass poröse Oxykarbid-abgeleitete Kohlenstoffe erfolgreich über die Chlorierung von keramischen Vorläuferverbindungen synthetisiert werden konnten. Die Kohlenstoffmaterialien zeigten nach der Prozessierung zu freistehenden und flexiblen Elektrodenfilmen vielversprechende Eigenschaften bei der Nutzung in elektrochemischen Doppelschichtkondensatoren, wie hohe spezifische Kapazitäten, gute Langzeitstabilitäten und hohe Arbeitsfrequenzen bei Lade- und Entladevorgängen.
7

Organicko-anorganické polymery - syntéza a charakterizace hybridních polymerů a nanokompozitů / Organic-inorganic polymers - synthesis and characterization of hybrid polymers and nanocomposites

Depa, Katarzyna January 2017 (has links)
In the first part of this work, silica nanoparticles and alternative or additional filler phases were incorporated into hydrogels based on the temperature-sensitive poly(N- isopropylacrylamide) (PNIPAm). Nano-SiO2-filled porous PNIPAm hydrogels with an enhanced force response (up to 100 g) to temperature stimuli were obtained by increasing several times the pore wall thickness, which was achieved via reducing the solvent (porogen) content during the gels' cryo-synthesis. A similar optimization of the force response was also carried out for analogous gels reinforced by nano-TiO2, in which the reinforcing effect of the filler is weaker. Partial intercalation of amylopectin starch into divinyl-crosslinked bulk as well as porous PNIPAm gels several times improved their extensibility. In case of starch-rich bulk gels, a very fast and extensive one-way deswelling in response to increased temperature was achieved (re-swelling upon cooling is much slower), which is attributed to specific properties of the starch-PNIPAm interface. In doubly-filled bulk PNIPAm/nano-SiO2/starch gels, a very strong synergic reinforcing effect of both fillers is observed, due to specific hydrogen bridging between the three phases. Highly porous cryogels based on PNIPAm/nano- SiO2/starch displayed a highly improved extensibility...

Page generated in 0.0754 seconds