• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 17
  • 15
  • 14
  • 13
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cooperative POMDPs for human-Robot joint activities / Modèles décisionnels pour la coopération homme-robot dans les activités jointes

Ferrari, Fabio Valerio 14 December 2017 (has links)
Objectif de cette thèse est le développent de méthodes de planification pour la résolution de tâches jointes homme-robot dans des espaces publiques. Dans les espaces publiques, les utilisateurs qui coopèrent avec le robot peuvent facilement se distraire et abandonner la tâche jointe. Cette thèse se focalise donc sur les défis posés par l’incertitude et imprévisibilité d’une coopération avec un humain. La thèse décrit l’état de l’art sur la coopération homme-robot dans la robotique de service, et sur les modèles de planification. Elle présente ensuite une nouvelle approche théorique, basée sur les processus décisionnels de Markov partiellement observables, qui permet de garantir la coopération de l’humain tout au long de la tâche, de façon flexible, robuste et rapide. La thèse introduit une structure hiérarchique qui sépare l’aspect coopératif d’une activité jointe de la tâche en soi. L’approche a été appliquée dans un scénario réel, un robot guide dans un centre commercial. La thèse présente les expériences effectuées pour mesurer la qualité de l’approche proposée, ainsi que les expériences avec le robot réel. / This thesis presents a novel method for ensuring cooperation between humans and robots in public spaces, under the constraint of human behavior uncertainty. The thesis introduces a hierarchical and flexible framework based on POMDPs. The framework partitions the overall joint activity into independent planning modules, each dealing with a specific aspect of the joint activity: either ensuring the human-robot cooperation, or proceeding with the task to achieve. The cooperation part can be solved independently from the task and executed as a finite state machine in order to contain online planning effort. In order to do so, we introduce a belief shift function and describe how to use it to transform a POMDP policy into an executable finite state machine.The developed framework has been implemented in a real application scenario as part of the COACHES project. The thesis describes the Escort mission used as testbed application and the details of implementation on the real robots. This scenario has as well been used to carry several experiments and to evaluate our contributions.
22

Autonomous Quadcopter Videographer

Coaguila, Quiquia Rey 01 January 2015 (has links)
In recent years, the interest in quadcopters as a robotics platform for autonomous photography has increased. This is due to their small size and mobility, which allow them to reach places that are difficult or even impossible for humans. This thesis focuses on the design of an autonomous quadcopter videographer, i.e. a quadcopter capable of capturing good footage of a specific subject. In order to obtain this footage, the system needs to choose appropriate vantage points and control the quadcopter. Skilled human videographers can easily spot good filming locations where the subject and its actions can be seen clearly in the resulting video footage, but translating this knowledge to a robot can be complex. We present an autonomous system implemented on a commercially available quadcopter that achieves this using only the monocular information and an accelerometer. Our system has two vantage point selection strategies: 1) a reactive approach, which moves the robot to a fixed location with respect to the human and 2) the combination of the reactive approach and a POMDP planner that considers the target's movement intentions. We compare the behavior of these two approaches under different target movement scenarios. The results show that the POMDP planner obtains more stable footage with less quadcopter motion.
23

Decision-Theoretic Meta-reasoning in Partially Observable and Decentralized Settings

Carlin, Alan Scott 01 February 2012 (has links)
This thesis examines decentralized meta-reasoning. For a single agent or multiple agents, it may not be enough for agents to compute correct decisions if they do not do so in a timely or resource efficient fashion. The utility of agent decisions typically increases with decision quality, but decreases with computation time. The reasoning about one's computation process is referred to as meta-reasoning. Aspects of meta-reasoning considered in this thesis include the reasoning about how to allocate computational resources, including when to stop one type of computation and begin another, and when to stop all computation and report an answer. Given a computational model, this translates into computing how to schedule the basic computations that solve a problem. This thesis constructs meta-reasoning strategies for the purposes of monitoring and control in multi-agent settings, specifically settings that can be modeled by the Decentralized Partially Observable Markov Decision Process (Dec-POMDP). It uses decision theory to optimize computation for efficiency in time and space in communicative and non-communicative decentralized settings. Whereas base-level reasoning describes the optimization of actual agent behaviors, the meta-reasoning strategies produced by this thesis dynamically optimize the computational resources which lead to the selection of base-level behaviors.
24

Des algorithmes presque optimaux pour les problèmes de décision séquentielle à des fins de collecte d'information / Near-Optimal Algorithms for Sequential Information-Gathering Decision Problems

Araya-López, Mauricio 04 February 2013 (has links)
Cette thèse s'intéresse à des problèmes de prise de décision séquentielle dans lesquels l'acquisition d'information est une fin en soi. Plus précisément, elle cherche d'abord à savoir comment modifier le formalisme des POMDP pour exprimer des problèmes de collecte d'information et à proposer des algorithmes pour résoudre ces problèmes. Cette approche est alors étendue à des tâches d'apprentissage par renforcement consistant à apprendre activement le modèle d'un système. De plus, cette thèse propose un nouvel algorithme d'apprentissage par renforcement bayésien, lequel utilise des transitions locales optimistes pour recueillir des informations de manière efficace tout en optimisant la performance escomptée. Grâce à une analyse de l'existant, des résultats théoriques et des études empiriques, cette thèse démontre que ces problèmes peuvent être résolus de façon optimale en théorie, que les méthodes proposées sont presque optimales, et que ces méthodes donnent des résultats comparables ou meilleurs que des approches de référence. Au-delà de ces résultats concrets, cette thèse ouvre la voie (1) à une meilleure compréhension de la relation entre la collecte d'informations et les politiques optimales dans les processus de prise de décision séquentielle, et (2) à une extension des très nombreux travaux traitant du contrôle de l'état d'un système à des problèmes de collecte d'informations / The purpose of this dissertation is to study sequential decision problems where acquiring information is an end in itself. More precisely, it first covers the question of how to modify the POMDP formalism to model information-gathering problems and which algorithms to use for solving them. This idea is then extended to reinforcement learning problems where the objective is to actively learn the model of the system. Also, this dissertation proposes a novel Bayesian reinforcement learning algorithm that uses optimistic local transitions to efficiently gather information while optimizing the expected return. Through bibliographic discussions, theoretical results and empirical studies, it is shown that these information-gathering problems are optimally solvable in theory, that the proposed methods are near-optimal solutions, and that these methods offer comparable or better results than reference approaches. Beyond these specific results, this dissertation paves the way (1) for understanding the relationship between information-gathering and optimal policies in sequential decision processes, and (2) for extending the large body of work about system state control to information-gathering problems
25

Planification de perception et de mission en environnement incertain : Application à la détection et à la reconnaissance de cibles par un hélicoptère autonome / Planning for perception and mission : application to multi-target detection and recognition missions by an autonomous helicopter

Ponzoni Carvalho Chanel, Caroline 12 April 2013 (has links)
Les agents robotiques mobiles ou aériens sont confrontés au besoin de planifier des actions avec information incomplètesur l'état du monde. Dans ce contexte, cette thèse propose un cadre de modélisation et de résolution de problèmes deplanification de perception et de mission pour un drone hélicoptère qui évolue dans un environnement incertain etpartiellement observé afin de détecter et de reconnaître des cibles. Nous avons fondé notre travail sur les ProcessusDécisionnels Markoviens Partiellement Observables (POMDP), car ils proposent un schéma d'optimisation général pour lestâches de perception et de décision à long terme. Une attention particulière est donnée à la modélisation des sortiesincertaines de l'algorithme de traitement d'image en tant que fonction d'observation. Une analyse critique de la mise enoeuvre en pratique du modèle POMDP et du critère d'optimisation associé est proposée. Afin de respecter les contraintes desécurité et de sûreté de nos robots aériens, nous proposons ensuite une approche pour tenir compte des propriétés defaisabilité d'actions dans des domaines partiellement observables : le modèle AC-POMDP, qui sépare l'informationconcernant la vérification des propriétés du modèle, de celle qui renseigne sur la nature des cibles. Enfin, nous proposonsun cadre d'optimisation et d'exécution en parallèle de politiques POMDP en temps contraint. Ce cadre est basé sur uneoptimisation anticipée et probabilisée des états d'exécution futurs du système. Nous avons embarqué ce cadrealgorithmique sur les hélicoptères autonomes de l'Onera, et l'avons testé en vol et en environnement réel sur une missionde détection et reconnaissance de cibles. / Mobile and aerial robots are faced to the need of planning actions with incomplete information about the state of theworld. In this context, this thesis proposes a modeling and resolution framework for perception and mission planningproblems where an autonomous helicopter must detect and recognize targets in an uncertain and partially observableenvironment. We founded our work on Partially Observable Markov Decision Processes (POMDPs), because it proposes ageneral optimization framework for perception and decision tasks under long-term horizon. A special attention is given tothe outputs of the image processing algorithm in order to model its uncertain behavior as a probabilistic observationfunction. A critical study on the POMDP model and its optimization criterion is also conducted. In order to respect safetyconstraints of aerial robots, we then propose an approach to properly handle action feasibility constraints in partiallyobservable domains: the AC-POMDP model, which distinguishes between the verification of environmental properties andthe information about targets' nature. Furthermore, we propose a framework to optimize and execute POMDP policies inparallel under time constraints. This framework is based on anticipated and probabilistic optimization of future executionstates of the system. Finally, we embedded this algorithmic framework on-board Onera's autonomous helicopters, andperformed real flight experiments for multi-target detection and recognition missions.
26

Learning in Partially Observable Markov Decision Processes

Sachan, Mohit 21 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Learning in Partially Observable Markov Decision process (POMDP) is motivated by the essential need to address a number of realistic problems. A number of methods exist for learning in POMDPs, but learning with limited amount of information about the model of POMDP remains a highly anticipated feature. Learning with minimal information is desirable in complex systems as methods requiring complete information among decision makers are impractical in complex systems due to increase of problem dimensionality. In this thesis we address the problem of decentralized control of POMDPs with unknown transition probabilities and reward. We suggest learning in POMDP using a tree based approach. States of the POMDP are guessed using this tree. Each node in the tree has an automaton in it and acts as a decentralized decision maker for the POMDP. The start state of POMDP is known as the landmark state. Each automaton in the tree uses a simple learning scheme to update its action choice and requires minimal information. The principal result derived is that, without proper knowledge of transition probabilities and rewards, the automata tree of decision makers will converge to a set of actions that maximizes the long term expected reward per unit time obtained by the system. The analysis is based on learning in sequential stochastic games and properties of ergodic Markov chains. Simulation results are presented to compare the long term rewards of the system under different decision control algorithms.
27

Opportunistic spectrum usage and optimal control in heterogeneous wireless networks / Accès opportuniste au spectre et contrôle optimal dans les réseaux sans fil hétérogènes

Raiss El Fenni, Mohammed 12 December 2012 (has links)
Durant cette thèse l’objectif été d’améliorer la manière d'utiliser la précieuse bande passante, qui est gaspillée à cause de la sous-utilisation des réseaux sans fil. Nous étions particulièrement intéressés à toutes les ressources qui peuvent être utilisées de façon opportuniste en utilisant différentes technologies. Nous avons conçu de nouveaux modèles pour une utilisation meilleure et plus efficace des systèmes sans fil. Dans ce sens nous nous sommes focalisés sur les réseaux de communication cognitifs dans la première partie, où un fournisseur de service cellulaire peut louer une partie de ses ressources à des utilisateurs secondaires ou des fournisseurs virtuels. Dans la deuxième partie, nous nous sommes intéressés aux réseaux tolérants au délai comme étant une alternative à l’augmentation importante de la charge de trafic dans le réseau cellulaire. Dans les régions où l'implémentation d'infrastructures réseaux est géographiquement difficile, l'utilisation des réseaux ad-hoc semble une solution adéquate. En effet, nous avons développé dans la dernière partie, une nouvelle modélisation analytique du protocole IEEE 802.11e utilisé dans ce type de réseaux / The present dissertation deals with how to use the precious wireless resources that are usually wasted by under-utilization of networks. We have been particularly interested by all resources that can be used in an opportunistic fashion using different technologies. We have designed new schemes for better and more efficient use of wireless systems by providing mathematical frameworks. In the first part, We have been interested in cognitive radio networks, where a cellular service provider can lease a part of its resources to secondary users or virtual providers. In the second part, we have chosen delay-tolerant networks as a solution to reduce the pressure on the cell traffic, where mobile users come to use available resources effectively and with a cheaper cost. We have focused on optimal strategy for smartphones in hybrid wireless networks. In the last part, an alternative to delay-tolerant networks, specially in regions that are not covered by the cellular network, is to use Ad-hoc networks. Indeed, they can be used as an extension of the coverage area. We have developed a new analytical modeling of the IEEE 802.11e DCF/EDCF. We have investigated the intricate interactions among layers by building a general cross-layered framework to represent multi-hop ad hoc networks with asymmetric topology and traffic
28

A Partially Observable Markov Decision Process for Breast Cancer Screening

Hudson, Joshua January 2019 (has links)
In the US, breast cancer is one of the most common forms of cancer and the most lethal. There are many decisions that must be made by the doctor and/or the patient when dealing with a potential breast cancer. Many of these decisions are made under uncertainty, whether it is the uncertainty related to the progression of the patient's health, or that related to the accuracy of the doctor's tests. Each possible action under consideration can have positive effects, such as a surgery successfully removing a tumour, and negative effects: a post-surgery infection for example. The human mind simply cannot take into account all the variables involved and possible outcomes when making these decisions. In this report, a detailed Partially Observable Markov Decision Process (POMDP) for breast cancer screening decisions is presented. It includes 151 states, covering 144 different cancer states, and 2 competing screening methods. The necessary parameters were first set up using relevant medical literature and a patient history simulator. Then the POMDP was solved optimally for an infinite horizon, using the Perseus algorithm. The resulting policy provided several recommendations for breast cancer screening. The results indicated that clinical breast examinations are important for screening younger women. Regarding the decision to operate on a woman with breast cancer, the policy showed that invasive cancers with either a tumour size above 1.5 cm or which are in metastasis, should be surgically removed as soon as possible. However, the policy also recommended that patients who are certain to be healthy should have a breast biopsy. The cause of this error was explored further and the conclusion was reached that a finite horizon may be more appropriate for this application.
29

Apprentissage par Renforcement : Au delà des Processus Décisionnels de Markov (Vers la cognition incarnée)

Dutech, Alain 02 December 2010 (has links) (PDF)
Ce document présente mon ``projet de recherche'' sur le thème de l'embodiment (``cognition incarnée'') au croisement des sciences cognitives, de l'intelligence artificielle et de la robotique. Plus précisément, je montre comment je compte explorer la façon dont un agent, artificiel ou biologique, élabore des représentations utiles et pertinentes de son environnement. Dans un premier temps, je positionne mes travaux en explicitant notamment les concepts de l'embodiment et de l'apprentissage par renforcement. Je m'attarde notamment sur la problématique de l'apprentissage par renforcement pour des tâches non-Markoviennes qui est une problématique commune aux différents travaux de recherche que j'ai menés au cours des treize dernières années dans des contextes mono et multi-agents, mais aussi robotique. L'analyse de ces travaux et de l'état de l'art du domaine me conforte dans l'idée que la principale difficulté pour l'agent est bien celle de trouver des représentations adaptées, utiles et pertinentes. J'argumente que l'on se retrouve face à une problématique fondamentale de la cognition, intimement liée aux problèmes de ``l'ancrage des symboles'', du ``frame problem'' et du fait ``d'être en situation'' et qu'on ne pourra y apporter des réponses que dans le cadre de l'embodiment. C'est à partir de ce constat que, dans une dernière partie, j'aborde les axes et les approches que je vais suivre pour poursuivre mes travaux en développant des techniques d'apprentissage robotique qui soient incrémentales, holistiques et motivationnelles.
30

Apprentissage par renforcement pour la généralisation des approches automatiques dans la conception des systèmes de dialogue oral

Pinault, Florian 24 November 2011 (has links) (PDF)
Les systèmes de dialogue homme machine actuellement utilisés dans l'industrie sont fortement limités par une forme de communication très rigide imposant à l'utilisateur de suivre la logique du concepteur du système. Cette limitation est en partie due à leur représentation de l'état de dialogue sous la forme de formulaires préétablis.Pour répondre à cette difficulté, nous proposons d'utiliser une représentation sémantique à structure plus riche et flexible visant à permettre à l'utilisateur de formuler librement sa demande.Une deuxième difficulté qui handicape grandement les systèmes de dialogue est le fort taux d'erreur du système de reconnaissance vocale. Afin de traiter ces erreurs de manière quantitative, la volonté de réaliser une planification de stratégie de dialogue en milieu incertain a conduit à utiliser des méthodes d'apprentissage par renforcement telles que les processus de décision de Markov partiellement observables (POMDP). Mais un inconvénient du paradigme POMDP est sa trop grande complexité algorithmique. Certaines propositions récentes permettent de réduire la complexité du modèle. Mais elles utilisent une représentation en formulaire et ne peuvent être appliqués directement à la représentation sémantique riche que nous proposons d'utiliser.Afin d'appliquer le modèle POMDP dans un système dont le modèle sémantique est complexe, nous proposons une nouvelle façon de contrôler sa complexité en introduisant un nouveau paradigme : le POMDP résumé à double suivi de la croyance. Dans notre proposition, le POMDP maitre, complexe, est transformé en un POMDP résumé, plus simple. Un premier suivi de croyance (belief update) est réalisé dans l'espace maitre (en intégrant des observations probabilistes sous forme de listes nbest). Et un second suivi de croyance est réalisé dans l'espace résumé, les stratégies obtenues sont ainsi optimisées sur un véritable POMDP.Nous proposons deux méthodes pour définir la projection du POMDP maitre en un POMDP résumé : par des règles manuelles et par regroupement automatique par k plus proches voisins. Pour cette dernière, nous proposons d'utiliser la distance d'édition entre graphes, que nous généralisons pour obtenir une distance entre listes nbest.En outre, le couplage entre un système résumé, reposant sur un modèle statistique par POMDP, et un système expert, reposant sur des règles ad hoc, fournit un meilleur contrôle sur la stratégie finale. Ce manque de contrôle est en effet une des faiblesses empêchant l'adoption des POMDP pour le dialogue dans l'industrie.Dans le domaine du renseignement d'informations touristiques et de la réservation de chambres d'hôtel, les résultats sur des dialogues simulés montrent l'efficacité de l'approche par renforcement associée à un système de règles pour s'adapter à un environnement bruité. Les tests réels sur des utilisateurs humains montrent qu'un système optimisé par renforcement obtient cependant de meilleures performances sur le critère pour lequel il a été optimisé.

Page generated in 0.0458 seconds