Spelling suggestions: "subject:"popula tremuloides""
41 |
Ecological Effects of Genotypic Diversity on Community and Ecosystem FunctionKanaga, Megan K. 01 December 2009 (has links)
Genotypic diversity within populations can have important evolutionary consequences, but the ecological effects of intraspecific genetic variation on community and ecosystem function have only been studied in a few systems. I present the results of a three-year study designed to address the ecological impacts of genotypic diversity in quaking aspen (Populus tremuloides Michx.), using aspen genotypes planted across genotypic diversity levels (monoculture and mixture) and watering treatment levels (well-watered and water-limited). First, I demonstrated that significant variation exists among genotypes for a wide range of growth, morphological and physiological traits, and quantified high heritability and coefficient of genetic variation values for those traits. This demonstrates that heritable phenotypic variation exists within an aspen population, which could potentially have community and ecosystem implications. Secondly, I collected ground-dwelling arthropods across experimental treatment levels to determine if there are any community-level implications of genotypic diversity and watering treatment. Ground-dwelling arthropods were significantly affected by the genotypic diversity × watering treatment interaction, such that arthropod taxonomic diversity was lowest in water-limited genotypic mixtures. This result runs counter to the bulk of the plant diversity-arthropod diversity literature, which predicts that plant and arthropod diversity should be positively correlated, and highlights the importance of environmental conditions in mediating the plant-arthropod diversity relationship. Lastly, I show that there are no overall effects of genotypic diversity or watering treatment on tree growth patterns. Instead, there are high levels of variation among genotypes in their responses to treatments (significant genotype × diversity × watering treatment interactions), which are often opposing in direction. I also show that there are significant collection site × diversity × watering treatment interactions, demonstrating that genotypes vary in their response to experimental treatments based in part on their original collection site conditions in the field. This study demonstrates that aspen populations contain high levels of genotypic diversity, but that the ecological effects of genotypic diversity are mediated by the environment (in this case, watering treatment) and can be considerably more complicated than found in most previous studies.
|
42 |
The Effect of Cattle, Sheep, and Other Factors on Aspen (Populus tremuloides) Reproduction After Clear-Cut Logging in Southern UtahLucas, Paul A. 01 May 1969 (has links)
Aspen is the most widespread deciduous tree of the western United States and the aspen type is important for water, forage, and wood products. Aspen reproduction on cutover areas was thought to be hindered by browsing and other factors, therefore a study was conducted to determine the effects of livestock, pocket gophers, disease, and snowpack damage on aspen reproduction during the first three years after clear-cutting. An enclosure was constructed and divided into nine paddocks. Controlled grazing by cattle and sheep was applied to six different paddocks during three summer periods. Three paddocks were protected from grazing. Results show that sheep utilized more sprouts than cattle, but controlled grazing by sheep or cattle did not prevent adequate aspen regeneration on good sites. Pocket gophers and disease appeared to be the most important decimating factors under controlled grazing. Sheep tended to concentrate on cutover areas so proper herding is needed to prevent misuse, especially the first and second years after initial sprouting.
|
43 |
Growth and nutrition of trembling aspen in harvested black spruce forests in northwestern QuébecToribio Fajardo, Monica January 2005 (has links)
No description available.
|
44 |
Hibrido Populus tremuloides L. x Populus tremula L. x Betula pendula Roth mikrodauginimo in vitro sąlygų ištyrimas ir augalų regenerantų išauginimas / Hybrid Populus tremuloides L. x Populus tremula L. x Betula pendula Roth micropropagation in vitro condition exploration and regeneration plant nurtureJusas, Mantas 14 January 2009 (has links)
Darbo objektas – naujai sukryžminti hibridinės drebulės (Populus tremuloides x Populus tremula) ir karpotojo beržo ( Betula pendula) hibridai. Darbo tikslas – Atlikti tolimąją hibridizaciją ir išauginti augalus-regenerantus nesubrendusių gemalų kultūroje bei įvertinti genetinę įvairovę. Darbo rezultatai. Sukryžminus gauta skirtingi hibridai. Jų įvairovė įvertinta APPD metodu. Išmatavus augimo tempus nustatyta, kad hibridai 16.2 ir 16.4 auga greičiau nei hibridinės drebulės klonai. Ištyrus adaptacijos nesterilioje aplinkoje sąlygas, nustatyta šaknijimosi tempai. Tyrimo metu pastebėta, kad ūgliukų sodinimas į durpių substratą Jiffi tabletėse su šaknimis ir be jų ilgesniam nei 3 mėnesių laikotarpiui, neturi augimo skirtumų. / Aim of the work: new crossbred hybrid aspen (Populus tremuloides x Populus tremula) and birch (Betula pendula) hybrids Objekt of the work: make long hybridization and grow up new regeneration plants in unformed embrio culture and rate genetical variation Results: After crossing get new hybrids. His variation rated by RAPD metod. After measure growing speed, set that hybrids 16.2 and 16.4 growing faster than hybriding aspen clons. In adaptation study set root growing speed. In study notice that plants with root and without in Jiffi tablet peat substratum after 3 month get same height .
|
45 |
Tuopų genties medžių hibridų mikrodauginimo audinių kultūroje sąlygų ištyrimas ir augalų- regenerantų išauginimas / Genus Populus trees hybrids in vitro microreproduction conditions and regenerate plants growthBuchowska, Jurata 14 January 2009 (has links)
Darbo objektas – Populus genties medžiai: Populus alba × Populus tremula (Nr. 20), Populus tremula x Populus alba ( Nr.21), P. tremuloides x P. tremula (Nr.8), P. tremuloides x P. tremula (Nr.3), P. tremuloides x P. tremula (Nr.9), Populus alba (Š16), P. berolinensis.
Darbo tikslas – nustatyti tuopų genties medžių hibridų mikrodauginimo in vitro sąlygas, bei augalų- regenerantų išauginimą. Išskirti genominę DNR iš drebulių, naudojant genominės DNR išskyrimo rinkinį NucleoSpin Plant.
Darbo metodai - Eksplantų paruošimas sterilinimui ir sterilinimas. Augalų regenerantų kultivavimo sąlygos. Maitinamosios terpės ruošimas, sterilinimas ir sudėtis. Mikroūglių perkėlimas į nesterilias sąlygas. DNR išskyrimas.
Darbo rezultatai. Tuopų medžių eksplantų sterilinimui tikslinga naudoti aseptinių tirpalų kombinaciją be „ACE“, kad užtikrinti gyvybingų ir be užkrato eksplantų išlikimą. Grybine infekcija labiausiai užkrėsti berlyninės tuopos eksplantai: užkratas sudarė nuo 72 proc. iki 80 proc. priklausomai nuo eksplantų prigimties. Tuopų genties medžių genotipas turi įtakos morfogenezei audinių kultūroje. Geriausia maitinamoji terpė mikroūglų susidarymui yra Murashige Scoog (MS) su citokininu BA- 0,5 mg/l. Kaliaus susidarymas ir spalva priklauso nuo genotipo. Iš visų tuopų hibridų sparčiausiai augo hibridas Nr. 8 P.( tremuloides x P. tremula). Vidutinis jo augimo greitis- 8,3 mm per 10 dienų. Atlikti DNR tyrimai APPD metodu parodo, kad motinmedžiai ir išauginti augalai in vitro yra... [toliau žr. visą tekstą] / Aim of the work: Genus Populus trees: Populus alba × Populus tremula (Nr. 20), Populus tremula x Populus alba (Nr.21), P. tremuloides x P. tremula (Nr.8), P. tremuloides x P. tremula (Nr.3), P. tremuloides x P. tremula (Nr.9), Populus alba (Š16), P. berolinensis. Object of the work: Investigate poplar genus hybrids in vitro micro reproduction conditions and regenerate plants growth. Investigate poplar genomic DNA using NucleoSpin Plant Kit. Methods: Preparation of explants culture for sterile manner. Plants regenerate rear conditions. Growth media preparation and sterilization. Micro sprout input into unsterile conditions. DNA isolation. Results: For poplar trees explants sterilization is purposeful using aseptic solution combination without “ACE”, to vouch vital and half explants survival. Fungous infection found in berolinensis poplar explants: infections reach from 72 to 80 % depending from explants nature. Poplar genus genotype has impact on morphogenesis in tissue culture. The best growth media is Murashige Scoog (MS) with citotoksine BA- 0,5 mg/l. Callus formation and colaration depends on genotipe. Fastest growth had hybrid No. 8 ( tremuloides x P. tremula) from all poplar hybrids. His mean growth was 8.3 mm per 10 days. RAPD analysis shown that the parent trees and trees race in vitro are the similar (the same).
|
46 |
Design and synthesis of xyloglucan oligosaccharides : structure-function studies and application of xyloglucan endotransglycosylase PttXET16ABaumann, Martin J. January 2004 (has links)
<p>Primary cell walls are a composite of cellulose microfibrilsand hemicelluloses. Xyloglucan is the principal hemicelluloseof primary cell walls of dicotyledons. Xyloglucanendotransglycosylases (XETs) cleave and religate xyloglucanpolymers in plant cell walls. A XET (PttXET16A) from hybridaspen has been heterologously expressed and characterized inour lab.</p><p>To study XETs enzymology on a molecular level a series ofnovel xyloglucan oligosaccharides (XGOs) have been synthesized.The chromogenic 2-nitrophenol XGO and fluorogenic XGOs havebeen used as kinetic probes for PttXET16A. The first 3-Dstructure of the XET and of the enzyme-substrate complexrevealed new insights into the requirements fortransglycosylation.</p><p>Cellulose fibers are an important raw material for manyindustries. In a novel chemo-enzymatic approach, thetransglycosylating activity of XET was used for biomimeticfiber surface modification. The aminoalditol XGO derivate wasused as key intermediate to incorporate novel chemicalfunctionality into xyloglucan. TheXGO derivatives wereintegrated into xyloglucan with PttXET16A. The resultingmodified xyloglucan was used as a versatile tool fiber surfacemodification.</p>
|
47 |
The use of microbial and organic amendments in the revegetation of smelter-affected soils near Flin Flon, MB2013 May 1900 (has links)
The boreal forest area around Flin Flon, MB, and Creighton, SK, has been the site of a metal mining and smelting complex since the 1930s. Smelter emissions, coupled with forest logging, forest fires, and subsequent soil erosion, have led to severe vegetation dieback and the development of soils containing a mixture of metals in varying concentrations. In affected areas, existing vegetation typically is stunted. Limestone applications to affected soils have served to increase pH and, in some instances, the vegetation has responded positively; however, in some areas limestone application has failed to restore vegetation, leading to an interest in examining the suitability of other soil amendments to affect revegetation in these areas. Typically revegetation programs focus on aboveground vegetation responses; however, healthy plant growth often is dependent on the presence of an equally healthy soil microbial community. Thus, this study attempted to link revegetation success with responses of the soil microbial community structure to various soil amendments.
Two studies were conducted to determine the influence of soil amendments (biochar, municipal and manure compost, glauconite, and an arbuscular mycorrhizal/ectomycorrhizal inoculant) on plant growth and microbial community structure in two soils from the Flin Flon area, classified as containing high and low metal concentrations. The two studies evaluated the growth of boreal forest understory species American vetch (Vicia americana) and tufted hairgrass (Deschampsia caespitosa) and overstory species jack pine (Pinus banksiana) and trembling aspen (Populus tremuloides) after addition of soil amendments, and the subsequent effects on microbial community structure. Greenhouse experiments evaluated plant growth for a period of 8 weeks (understory species) or 19 weeks (overstory species), after which plants were analyzed for changes in biomass and metal accumulation in plant tissue. Soils were analyzed for available metal concentrations, as well as microbial biomass carbon and nitrogen, and phospholipid fatty acid concentration, which is a measure of microbial community structure. Significant effects were seen on plant growth and microbial community structure due to the metal concentrations in the soil, but no one amendment consistently impacted plant growth or metal uptake, or any measured microbial parameter. The results of this study indicate the variability of plant growth and microbial functioning in soils from the study site, as well as the inherent challenges associated with revegetating heavy metal affected soils, and underline the need for further research on plant growth and microbial community structure at this site.
|
48 |
Détermination de l'âge de l'épinette noire (picea mariana) en sous-étage de peupliers faux-trembles (populus tremuloides) dans la forêt boréale, Québec /Desrochers, Annie, January 1996 (has links)
Mémoire (M.Ress.Renouv.)--Université du Québec à Chicoutimi, 1996. / Document électronique également accessible en format PDF. CaQCU
|
49 |
Dendrochronological Methods to Examine Plant Competition with Changing Fire Regimes in Desert and Forest EcosystemsLee, Rebecca Irene 01 November 2019 (has links)
Human activities are changing wildfire regimes globally through ignition, spread of invasive species, fire suppression, and climate change. Because of this, ecosystems are experiencing novel fire regimes that may alter plant growth and patterns of succession. Annual growth rings are one metric that can track changes in tree and shrub growth patterns over time in response to changing fire frequency. In Chapter 1 we explored the effects of fire on resprouting native shrubs in the Mojave Desert. Fires are becoming increasingly frequent due to the spread of highly flammable invasive grasses in the region. We monitored growth and fruit production of Larrea tridentata D.C. (creosote bush) on burned and unburned transects from three independent 2005 wildfires. Even though creosote has a high fire mortality rate, we found that resprouting creosote produced 4.7 times the amount of fruit and had stems that grew nearly twice as fast compared to creosote in unburned areas. Our data suggest that creosote can resprout after fire and thrives in its growth rates and reproduction in post-fire environments. In Chapter 2 we used annual Basal Area Increment to investigate how fire suppression has altered facilitation and competition interactions through stages of succession in mixed aspen-conifer forests. We found that aspen had lower growth rates in mixed aspen-conifer stands compared to aspen dominant stands. We also found that aspen growing with an associated fir tree due to facilitation had increasingly lower growth rates over time than those growing independently. Fir trees in mixed stands were facilitated over time by associated aspen trees while fir trees growing in association and independently in aspen stands showed no statistical difference from each other but grew better than independent fir trees in mixed stands. Our data suggest that restoring a more frequent fire regime will balance competitive interactions between aspen and conifer in subalpine forests.
|
50 |
A Spatiotemporal Analysis of Aspen Decline in Southern Utah’s Cedar Mountain, Using Remote Sensing and Geographic Information SystemsEvans, David M. 01 May 2010 (has links)
Widespread mortality of quaking aspen (Populus tremuloides Michx.) has occurred over large expanses of the Western US during the 20th century. While much of this decline was due to conifer encroachment into seral aspen, significant aspen losses also occurred in areas of persistent aspen and may have been exasperated by drought conditions. Aspen decline has been especially notable at Cedar Mountain, Utah, an area of mostly private land and extensive persistent aspen coverage. The objectives of this study were to create a time series of live and dead aspen cover on the Cedar Mountain landscape, using remotely sensed imagery, and to test whether water stress correlated to the decline therein. To accomplish these objectives, a decision tree classifier was used to classify the Cedar Mountain area into live and dead aspen cover classes for the years 1985, 1990, 1995, 2001, 2005, and 2008. Thereafter, post-classification change analysis was performed to determine areas and time periods of elevated decline. Regression analyses were performed to ascertain correlations between climatic data and percent change in aspen cover. A topographic analysis using zonal statistics was also performed to determine landscape positions where aspen decline is more prevalent. The time series models indicated that aspen decline followed a step-wise pattern with an overall decrease of 23.57 % in aspen cover during a 23-year period. Considerable aspen decline occurred early in the study time frame, with decreases of 1.38 and 1.36 -1 in 1990 and 1995, respectively. The middle period between 1995 and 2001 had no net change in aspen cover. However, the end of the time series showed the greatest decline with decreases of 1.56 and 1.99 % yr-1 in 2005 and 2008, respectively. There was a correlation between percent change in aspen cover and precipitation, suggesting that drought weakens aspen, making it susceptible to future decline. The topographic zonal statistics revealed that drier landscape positions had greater frequencies of dead aspen. The most significant predictor of aspen decline was elevation, which was significantly greater in the live aspen for three of the five years.
|
Page generated in 0.0541 seconds