• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tailoring Pore Size and Polarity for Liquid Phase Adsorption by Porous Carbons

Hippauf, Felix 29 May 2017 (has links) (PDF)
Adsorption is a versatile purification technique to selectively separate different peptide fractions from a mixture using mild operation conditions. Porous carbons are ideally suited to separate ACE-inhibiting dipeptides by combining tailored size exclusion and polarity selectivity. The desired peptide fraction is mostly hydrophobic and very small and should adsorb inside hydrophobic micropores. The second topic of this thesis is linked to energy storage. The lithium-sulfur battery is a promising alternative to common lithium-ion batteries with theoretical capacities of up to 1672 mAh g−1 sulfur. The second aim of this thesis is to conduct an in-depth investigation of polysulfides interacting with selected carbon materials in a simplified battery electrolyte environment. The focus of this study is laid on the impact of surface polarity and pore size distribution of the carbon to develop a quantitative correlation between polysulfide retention and porosity metrics. Both, the enrichment of ACE-inhibitors and the retention of polysulfides rely on liquid phase adsorption in porous materials, linking the above mentioned topics. This thesis not only aims to develop an enrichment process or to find a superior battery cathode but also strives to explore structure-property relationships that are universally valid. Understanding the complex interplay of pore size and polarity leading to selective interactions between pore wall and the adsorbed species is given a high priority.
2

Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage

Zhu, Jinhui, Yang, Jun, Miao, Rongrong, Zhaoquan, Zhaoquan, Zhuang , Xiaodong, Feng, Xinliang 17 July 2017 (has links) (PDF)
Nitrogen-doped (N-doped) porous carbons have drawn increasing attention due to their high activity for electrochemical catalysis, and high capacity for lithium-ion (Li-ion) batteries and supercapacitors. So far, the controlled synthesis of N-enriched ordered mesoporous carbons (N-OMCs) for Li-ion batteries is rarely reported due to the lack of a reliable nitrogen-doping protocol that maintains the ordered mesoporous structure. In order to realize this, in this work, ordered mesoporous carbons with controllable N contents were successfully prepared by using melamine, F127 and phenolic resin as the N-source, template and carbon-source respectively via a solvent-free ball-milling method. The as-prepared N-OMCs which showed a high N content up to 31.7 wt% were used as anodes for Li-ion batteries. Remarkably, the N-OMCs with an N content of 24.4 wt% exhibit the highest reversible capacity (506 mA h g−1) even after 300 cycles at 300 mA g−1 and a capacity retention of 103.3%. N-OMCs were also used as electrode materials in supercapacitors and a capacity of 150 F g−1 at 0.2 A g−1 with stable cycling up to 2500 times at 1 A g−1 was achieved. These attractive results encourage the design and synthesis of high heteroatom content ordered porous carbons for applications in the field of energy storage and conversion.
3

Resin and carbon foam production by cationic step-growth polymerization of organic carbonates

Wöckel, L., Seifert, A., Mende, C., Roth-Panke, I., Kroll, L., Spange, S. 06 March 2017 (has links) (PDF)
Acid induced step-growth polymerizations of bis(p-methoxybenzyl) carbonate (pMBC), bis(m-methoxybenzyl) carbonate (mMBC) and difurfuryl carbonate (DFC) have been performed to produce resin-foams, because controlled release of carbon dioxide takes place during polymerization of those organic carbonates. The monomers are polymerized in bulk using p-toluene sulfonic acid (pTS) as a catalyst. The volume development of the foams is assisted by use of an appropriate surfactant and the crosslinking agent 1,3,5-trioxane as co-components. A portion of carbon dioxide release is a function of the carbenium stability of the reactive intermediate derived from the monomer; DFC > pMBC ≫ mMBC. Resins derived from mMBC can be post-treated to release carbon dioxide after polymerization. The molecular structures of the resulting materials are investigated by solid state 13C-NMR spectroscopy and IR spectroscopy. Scanning electron microscopy was used to study foam morphology. The carbon dioxide release was monitored with TG-MS analysis. Finally, the polymer foams have been converted into carbon foams and investigated by means of mercury porosimetry. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
4

Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage

Zhu, Jinhui, Yang, Jun, Miao, Rongrong, Zhaoquan, Zhaoquan, Zhuang, Xiaodong, Feng, Xinliang 17 July 2017 (has links)
Nitrogen-doped (N-doped) porous carbons have drawn increasing attention due to their high activity for electrochemical catalysis, and high capacity for lithium-ion (Li-ion) batteries and supercapacitors. So far, the controlled synthesis of N-enriched ordered mesoporous carbons (N-OMCs) for Li-ion batteries is rarely reported due to the lack of a reliable nitrogen-doping protocol that maintains the ordered mesoporous structure. In order to realize this, in this work, ordered mesoporous carbons with controllable N contents were successfully prepared by using melamine, F127 and phenolic resin as the N-source, template and carbon-source respectively via a solvent-free ball-milling method. The as-prepared N-OMCs which showed a high N content up to 31.7 wt% were used as anodes for Li-ion batteries. Remarkably, the N-OMCs with an N content of 24.4 wt% exhibit the highest reversible capacity (506 mA h g−1) even after 300 cycles at 300 mA g−1 and a capacity retention of 103.3%. N-OMCs were also used as electrode materials in supercapacitors and a capacity of 150 F g−1 at 0.2 A g−1 with stable cycling up to 2500 times at 1 A g−1 was achieved. These attractive results encourage the design and synthesis of high heteroatom content ordered porous carbons for applications in the field of energy storage and conversion.
5

Tailoring Pore Size and Polarity for Liquid Phase Adsorption by Porous Carbons

Hippauf, Felix 28 March 2017 (has links)
Adsorption is a versatile purification technique to selectively separate different peptide fractions from a mixture using mild operation conditions. Porous carbons are ideally suited to separate ACE-inhibiting dipeptides by combining tailored size exclusion and polarity selectivity. The desired peptide fraction is mostly hydrophobic and very small and should adsorb inside hydrophobic micropores. The second topic of this thesis is linked to energy storage. The lithium-sulfur battery is a promising alternative to common lithium-ion batteries with theoretical capacities of up to 1672 mAh g−1 sulfur. The second aim of this thesis is to conduct an in-depth investigation of polysulfides interacting with selected carbon materials in a simplified battery electrolyte environment. The focus of this study is laid on the impact of surface polarity and pore size distribution of the carbon to develop a quantitative correlation between polysulfide retention and porosity metrics. Both, the enrichment of ACE-inhibitors and the retention of polysulfides rely on liquid phase adsorption in porous materials, linking the above mentioned topics. This thesis not only aims to develop an enrichment process or to find a superior battery cathode but also strives to explore structure-property relationships that are universally valid. Understanding the complex interplay of pore size and polarity leading to selective interactions between pore wall and the adsorbed species is given a high priority.
6

Resin and carbon foam production by cationic step-growth polymerization of organic carbonates

Wöckel, L., Seifert, A., Mende, C., Roth-Panke, I., Kroll, L., Spange, S. 06 March 2017 (has links)
Acid induced step-growth polymerizations of bis(p-methoxybenzyl) carbonate (pMBC), bis(m-methoxybenzyl) carbonate (mMBC) and difurfuryl carbonate (DFC) have been performed to produce resin-foams, because controlled release of carbon dioxide takes place during polymerization of those organic carbonates. The monomers are polymerized in bulk using p-toluene sulfonic acid (pTS) as a catalyst. The volume development of the foams is assisted by use of an appropriate surfactant and the crosslinking agent 1,3,5-trioxane as co-components. A portion of carbon dioxide release is a function of the carbenium stability of the reactive intermediate derived from the monomer; DFC > pMBC ≫ mMBC. Resins derived from mMBC can be post-treated to release carbon dioxide after polymerization. The molecular structures of the resulting materials are investigated by solid state 13C-NMR spectroscopy and IR spectroscopy. Scanning electron microscopy was used to study foam morphology. The carbon dioxide release was monitored with TG-MS analysis. Finally, the polymer foams have been converted into carbon foams and investigated by means of mercury porosimetry. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
7

Neuartige Syntheserouten für poröse Kohlenstoffmaterialien – Von der Mikropore bis zum Schaum –

Wöckel, Lydia 25 October 2019 (has links)
Die vorliegende Arbeit befasst sich mit der Synthese von porösen Kohlenstoffmaterialien. Zum einen werden poröse Kohlenstoffe (C) für die Anwendung in Siliziumcarbid (SiC) faserverstärkten Verbundwerkstoffen (SiC/C) untersucht, deren Kohlenstoffmatrix definierte Porengrößen im einstelligen Mikrometerbereich aufweisen sollen, um anschließend über das Flüssigsilizierverfahren (LSI) eine stöchiometrische Umsetzung dieser mit flüssigen Silizium zu einer Siliziumcarbid-Matrix zu gewährleisten. Erhalten wird ein keramischer SiC/SiC-Faserverbundwerkstoff, der aufgrund seiner Beständigkeit in Hochtemperatur-Sauerstoffatmosphäre, für den Einsatz in der Luft- und Raumfahrt geeignet ist. Für dieses Ziel wurden verschiedene Kohlenstoffprecursoren, die Resole, Novolake und stickstoffhaltigen Phenolharze unter Zugabe von β-Naphthol, entwickelt. Darüber hinaus lag der Schwerpunkt dieser Arbeit in der Herstellung von porösen Kohlenstoffschäumen. Dafür wurden organische Carbonate dargestellt, deren Substituenten einer Stufenwachstumspolymerisation befähigt sind. In der Schmelze polymerisieren diese Säure-katalysiert und setzen dabei Kohlenstoffdioxid frei, welches gleichzeitig das Polymer schäumt. Die Zugabe eines geeigneten Tensides stabilisiert die Kohlenstoffdioxidblasen und generiert Schäume unter einer hohen Volumenexpansion. Die organischen Carbonate wurden zudem simultan mit Zwillingsmonomeren kationisch polymerisiert um einen Hybridmaterialschaum zu synthetisieren, der anschließend in hierarchisch strukturierte poröse Kohlenstoff- und Siliziumdioxidschäume umgewandelt werden kann. Neben klassischen Methoden zur Aufklärung der molekularen Strukturen, wie der Kernspinresonanz- (NMR) und Infrarot (IR)-Spektroskopie, wurden Morphologie und Porosität mittels Licht- und Rasterelektronenmikroskopie (REM) beziehungsweise Stickstoffsorption und Quecksilberporosimetrie untersucht. Überdies kamen DSC (Dynamische Differenzkalorimetrie) und TGA (Thermogravimetrische Analyse) zur Untersuchung des thermischen Verhaltens der Monomere und Polymere zum Einsatz.:1 Einleitung 2 Motivation und Zielsetzung 3 Theoretische Grundlagen 3.1 Poröse Materialien und deren Charakterisierung 3.1.1 Einteilung nach der Porengröße 3.1.2 Einteilung nach der Porenmorphologie 3.1.3 Beschreibung und Bestimmung von der Porosität 3.1.4 Charakterisierung von Mikro- und Mesoporen 3.2 Herstellung von porösen Kohlenstoff- und Siliziumdioxidmaterialien 3.2.1 Harttemplatsynthesen 3.2.2 Weichtemplatsynthesen 3.2.3 Gelsynthesen und Emulsionstechniken 3.2.4 Schäumungsprozesse 3.2.5 Hybridmaterialien 3.2.6 Zwillingspolymerisation 3.2.7 Hierarchisch strukturierte Kohlenstoffmaterialien mittels Zwillingspolymerisation 3.3 Verwendung von porösen Kohlenstoffmaterialien 3.3.1 SiC/SiC-Faserverbundwerkstoffe 4 Ergebnisse und Diskussion 4.1 Synthese von Phenolharzen als Kohlenstoffprecursoren für SiC/C Faserverbundwerkstoffe 4.1.1 Anforderungen an die Kohlenstoffprecursoren für eine SiC-Matrix 4.1.2 Resole 4.1.3 Novolake und stickstoffhaltige Phenolharze 4.1.4 Molmassen 4.1.1 DSC- und Rheologie-Untersuchungen 4.1.2 Aushärtung der flüssigen Harzformulierungen 4.1.2.1 13C-{1H}-CP-MAS-NMR-Spektroskopie 4.1.3 Herstellung von Kohlenstoffen 4.1.4 Untersuchung der Morphologie und Porosität 4.1.4.1 Ausgehärtete Harze 4.1.4.2 Kohlenstoff 4.1.5 Herstellung und Charakterisierung der SiC/C-Faserverbundwerkstoffe 4.1.6 Untersuchung zur Struktur des Kohlenstoffs 4.1.7 Silizierung der Kohlenstoffe 4.1.8 Porosität durch Catecholoxalat 4.2 Kationische Polymerisation von organischen Carbonaten 4.2.1 Synthese organischer Carbonate 4.2.2 Polymerisationsverhalten organischer Carbonate 4.2.3 Kationische Polymerisation organischer Carbonate 4.2.4 Molmassen und thermisches Verhalten 4.2.5 Morphologie der Polymerschäume 4.2.6 Molekulare Struktur 4.2.7 Poröse Kohlenstoffe 4.3 Simultane Polymerisation von organischen Carbonaten und Zwillingsmonomeren 4.3.1 Theoretische Betrachtungen 4.3.2 Polymerisationsverhalten der Monomermischungen 4.3.3 Variation der Reaktionsbedingungen 4.3.4 Morphologie der Organik/SiO2-Hybridmaterialschäume 4.3.5 Molekulare Struktur der Organik/SiO2-Hybridmaterialschäume 4.3.5.1 13C {1H} CP-MAS-NMR-Spektroskopie 4.3.5.2 29Si-{1H}-CP-MAS-NMR-Spektroskopie 4.3.5.3 ATR-FTIR-Spektroskopie 4.3.5.4 Extraktionsversuche der Hybridmaterialien 4.3.5.5 Elementverteilung mittels Energiedispersiver Röntgenspektroskopie 4.3.6 Herstellung poröser Kohlenstoff- und SiO2-Schäume aus Hybridmaterialschäumen 4.3.6.1 Zusammensetzung des Hybridmaterial- und C/SiO2-Schaums 4.3.6.2 Morphologie der Kohlenstoff- und SiO2-Schäume 4.3.7 Porositätsuntersuchungen an porösen Kohlenstoff- und SiO2-Schäumen 4.3.7.1 Stickstoffsorption 4.3.7.2 Quecksilberporosimetrie 5 Zusammenfassung und Ausblick 6 Experimenteller Teil 6.1 Chemikalien 6.2 Charakterisierungsmethoden 6.3 Synthesen 6.3.1 Herstellung von Resolen 6.3.2 Herstellung eines Novolaks 6.3.3 Herstellung eines stickstoffhaltigen Phenolharzes 6.3.4 Herstellung einer flüssigen Harzmischung 6.3.5 Aushärtung der flüssigen Harze und Harzmischungen 6.3.6 Pyrolyse der ausgehärteten Phenolharze und Harzmischungen 6.3.7 Herstellung von SiC-faserverstärkten Kohlenstoffen (SiC/C) 6.3.8 Silizierung von Kohlenstoffen 6.3.9 1,1'-methylenebis(naphthalen-2-ol) 6.3.10 Catecholoxalat 6.3.11 Bis(furan-2-ylmethyl) carbonat (Difurfurylcarbonat DFC) 6.3.12 Bis(p-methoxybenzyl) carbonat (pC) 6.3.13 Bis(m-methoxybenzyl) carbonat (mC) 6.3.14 Tetrafurfuryloxysilan (TFOS) 6.3.15 2,2’-Spirobi[4H-1,3,2-benzodioxasilin] (Spiro) 6.3.16 Polymerisation von mC, pC und DFC 6.3.17 Simultane Polymerisation von Carbonaten mit Zwillingsmonomeren 6.3.18 Extraktion 6.3.19 Pyrolyse der Organik/SiO2-Hybridmaterialien 6.3.20 Siliziumdioxid-Ätzen 6.3.21 Oxidation der Organik/SiO2-Hybridmaterialien 6.3.22 Oxidation der Kohlenstoff/SiO2-Materialien Anhang Literaturverzeichnis Danksagung Selbstständigkeitserklärung Lebenslauf Persönliche Daten Ausbildung und beruflicher Werdegang Liste der Publikationen, Vorträge und Posterpräsentationen

Page generated in 0.0409 seconds