• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of the filtration of fibre/particle mixtures

Chellappah, Kuhan January 2010 (has links)
This thesis investigates the constant pressure cake filtration of interacting cellulose fibre/TiO2 (rutile) mixtures, and involved experimental studies using an automated pressure filtration apparatus. The influence of suspension composition, filtration pressure and solution environment on filtration has been discussed in relation to cake properties such as average cake porosity and specific resistance. To help interpret the filtration results, sedimentation data were also obtained. The average porosities of filter cakes formed from pure rutile and fibre suspensions in deionised water were approximately 0.6 and 0.75, respectively, and a steady and progressive increase in porosity with fibre fraction was generally observed. With filtrations at 450 kPa, the average specific cake resistances for pure fibre and rutile in deionised water were approximately 9.4x1013 and 4.2x1012 m kg-1 respectively, with the variation of specific resistance with solids composition showing a minimum. Similar trends were observed at other tested filtration pressures with suspensions in deionised water but not with filtrations of suspensions in 0.2 M NaCl and 0.1 M CaCl2 solutions. The minima in average specific cake resistance with solids composition for feeds in deionised water was attributed to rutile-fibre interactions. Abrupt transitions in cake structure were evident part way through some filtrations, and resulted in unexpected filtrate flow behaviour. This is an interesting phenomenon, and not only were the changes in cake structure relatively reproducible, but also the nature of the change could be altered by changes in filtration pressure, solids composition and/or solution environment. The study of fibre/particle binary filtration behaviour, in particular the porosity and specific cake resistance trends, were substantiated by relevant theoretical treatment and modelling analysis. With the porosity trends, an additive porosity concept seemed to represent the data better than interparticle penetration models. With the specific cake resistance trends, a semi-empirical equation was proposed which appeared to represent a wide range of binary mixture filtration data. A mathematical framework was also developed in an attempt to understand the underlying physical mechanisms which led to filter cake restructuring, and possible explanations were postulated.
2

The characterization of novel cements

Yates, Malcolm January 1991 (has links)
The present study deals with the physical characterization of macrodefect free cements produced by ICI. These materials are made through a specialized mixing technique which incorporates an organic polymer into the cement/water system. The high mechanical strength and low porosity of this class of hardened cement paste had been well documented, however, a detailed characterization of the physical nature of the microstructure had not previously been attempted. Two classes of macrodefect free material were studied, based on Ordinary Portland cement and High Alumina cement, respectively. The porosities of these two materials were determined in their original state and after various forms of heat treatment and conditioning. Samples based on Ordinary Portland cement had a well defined narrow pore size distribution, even after heat treatment, while the High Alumina cement samples displayed a very low total pore volume in their original state, but subsequent heat treatment led to the developement of porosity over a wide range of pore sizes. These fundamental differences in the pore size distributions had significant effects on the homogeneity and reproducibility of the microstructures of the samples. The porosity generated by heat treatment was found to be unstable in the presence of water. In general, reductions in the porosities and permeabilities were observed. This was due to the formation of fresh cement hydrate gel within the pore structure, which caused a shift in the pore size distributions towards smaller pores.
3

Basinward Trends in Fluvial Architecture, Connectivity, and Reservoir Characterization of the Trail Member, Ericson Sandstone, Mesaverde Group in Wyoming, Utah, and Colorado, USA

Jolley, Chelsea Anne 01 June 2019 (has links)
The Late Cretaceous Trail Member of the Ericson Sandstone represents a regionally extensive fluvial system that transported sediments from the Sevier fold and thrust belt and Uinta Mountain uplift to the Western Interior Seaway. The Trail Member is a petroleum reservoir target that has unpredictable production rates due to the unknown behavior and connectivity of channel sandstones. The abundant outcrop, wellbore, and core data available allows for a comprehensive analysis of how the fluvial architecture, connectivity, and reservoir quality change along 65 km of depositional dip. Observations made at Flaming Gorge and Clay Basin (most landward field locations) suggest a highly mobile fluvial system that was influenced by both autogenic channel clustering and allogenic forcing. Evidence is seen for movement along the Sevier fold and thrust belt and early Laramide uplift of the Uinta Mountains. Specifically, three zones identify temporal tectonic changes throughout deposition of the Trail Member. The Upper and Lower Trail zones represent times of low accommodation as the fluvial system must avulse and move laterally to find available space. The Middle Trail zone represents a higher accommodation setting with internal autogenic channel clustering. This shows that on a finer timescale, autogenic processes control sediment distribution, while on a longer timescale, external drivers, specifically tectonics, control the distribution of sediment in the Trail fluvial system. Significant changes were observed within the Trail Member towards the basin. At Northern Colorado, lenticular, fluvial-dominated sands are still common, preserved organic and woody material, mud cracks, and increased bioturbation are observed that are not present elsewhere. The sandstone channels are slightly wider, have more common occurrences of low flow-regime sedimentary structures such as ripples and mud cracks, and appear to be more individually isolated with thin fine-grained material surrounding the channels. On a larger scale, photogrammetric analysis shows a rapid lateral change (0.3 km) from a sand-rich, channel-dominated expression to a mud-rich, channel-poor character. These observations suggest a lower energy fluvial system focused within a possible incised valley showing that the fluvial system is being influenced primarily by eustatic forces, rather than tectonics. Subsurface data from twelve wells located north of the Northern Colorado locality show a rapid (15 km) increase in thickness (97 m to 182 m) and decrease in net-to-gross (89.3% to 65.3%). Early subsidence of the Washakie sub-basin just east of the wells could account for the rapid increase in accommodation. Another possible explanation for the rapid thickness increase to the northeast could be the presence of an incised valley. These possibilities show the complexity of the environment within which the Trail Member fluvial system deposited sediments.

Page generated in 0.1115 seconds