• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of behavioral pattern under various nourishing conditions for ciliates using spatial analysis.

Yan, Jang-Ching 01 August 2007 (has links)
It is a research of the move trajectory of the ciliates while feeding the food, in order to estimate, differentiate from the movement behavior under different environments. First, discuss the differently distinguish with the single indicator. Second, discuss with integrate four kinds of indicator whether can distinguish differently. Finally, combine the indicator data and through different analysis technology look out the features of movement behavior, expect to be able to look out suitable information and knowledge from the indicator data. After deal with analytical technology, the result of decision tree is most suitable for predicted and have credibilities. If according to energy of biological, the analysis result is similar to optimal foraging theory. And learn from result under different condition, the movement behavior of the ciliates similar to the optimal foraging theory. In the matter of the result of analysis technology, data of the density of low food similar to data of the density of extremely high food. Besides, data of medium food and high food are analogous. The rule of decision tree can distinguish the density of different food, and can offer follow-up study to distinguish the environmental conditions. Those models are evaluated by predicting accuracies, and rules extracted from decision tree models are also of great help to prediction as well.
2

Sand distribution along shelf-edge deltaic systems : a case study from eastern offshore Trinidad

Davila-Chacon, Anmar Carolina 15 February 2011 (has links)
The study area is situated along the obliquely converging boundary of the Caribbean and South American plates offshore eastern offshore Trinidad. Major structural elements in the shelf break and deep-water slope regions include normal and counter-normal faults to the south and large transpressional fault zones to the north. Well logs and biostratigraphic information were analyzed for twenty-four wells in the study area to refine previous depositional environment interpretations. For purposes of this net sand distribution analysis it was decided to consider the deltaic portion of the shelf transit cycle, against the marine portion of the shelf transit cycle and were named T and R cycles, respectively. T and R cycles were interpreted based on well log patterns and depositional facies shifts. Six T/R cycles were interpreted within the Pliocene to recent stratigraphic succession and shelf edge trajectories were also mapped for each of these cycles based on earlier stratigraphic correlations. Net-to-gross (NTG) ratios were calculated for each component of the T/R cycles and plotted against total thicknesses and net sand values. In addition, NTG trends were mapped for each interval and analyzed based on their proximity to the corresponding shelf edge. Mapping of the shelf edge trajectories (SET) revealed that (1) SET migrate northeasterly across the Columbus Basin through time and (2) shelf edge orientations are parallel to the strike of growth faults in the south but deflect to the northeast near the Darien Ridge indicating a strong underlying structural control. The NTG plots and maps also revealed that (1) For T cycles, NTG values never exceed 60% and are inversely proportional to total thickness, (2) For R cycles, NTG values are highly variably ranging from 35% to 90%, (3) NTG values increase as the shelf break is approached and (4) The distribution of NTG ratios is also controlled by accommodation space created by local structures. The Guiana current is believed to play an important role in the redistribution and reworking of sand in the Columbus Basin. Aggradation and progradation distances were computed for each interval and the results suggest that the younger Sequences C2 (T-R cycle E) and C3 (T-R cycle F) show a stronger progradational trend than the older C4, C5 and C6. This strong progradational trend might indicate delivery of sand basinwards, while for the older intervals; the aggradational trend suggests an increase in sediment storage. In long-term scale (1-2 m.y.) the Orinoco Delta seems to behave as an aggradational delta that increases sediment storage due to growth fault and high subsidence rates. However, in the short-term scale, the Orinoco delta seems to behave as a rapid progradational delta, for the younger sequences C2 and C3, where sediment bypass is more likely to occur; and as a rapid aggradational (slow prograding) margin for the older intervals C4, C5 and C6. / text
3

Basinward Trends in Fluvial Architecture, Connectivity, and Reservoir Characterization of the Trail Member, Ericson Sandstone, Mesaverde Group in Wyoming, Utah, and Colorado, USA

Jolley, Chelsea Anne 01 June 2019 (has links)
The Late Cretaceous Trail Member of the Ericson Sandstone represents a regionally extensive fluvial system that transported sediments from the Sevier fold and thrust belt and Uinta Mountain uplift to the Western Interior Seaway. The Trail Member is a petroleum reservoir target that has unpredictable production rates due to the unknown behavior and connectivity of channel sandstones. The abundant outcrop, wellbore, and core data available allows for a comprehensive analysis of how the fluvial architecture, connectivity, and reservoir quality change along 65 km of depositional dip. Observations made at Flaming Gorge and Clay Basin (most landward field locations) suggest a highly mobile fluvial system that was influenced by both autogenic channel clustering and allogenic forcing. Evidence is seen for movement along the Sevier fold and thrust belt and early Laramide uplift of the Uinta Mountains. Specifically, three zones identify temporal tectonic changes throughout deposition of the Trail Member. The Upper and Lower Trail zones represent times of low accommodation as the fluvial system must avulse and move laterally to find available space. The Middle Trail zone represents a higher accommodation setting with internal autogenic channel clustering. This shows that on a finer timescale, autogenic processes control sediment distribution, while on a longer timescale, external drivers, specifically tectonics, control the distribution of sediment in the Trail fluvial system. Significant changes were observed within the Trail Member towards the basin. At Northern Colorado, lenticular, fluvial-dominated sands are still common, preserved organic and woody material, mud cracks, and increased bioturbation are observed that are not present elsewhere. The sandstone channels are slightly wider, have more common occurrences of low flow-regime sedimentary structures such as ripples and mud cracks, and appear to be more individually isolated with thin fine-grained material surrounding the channels. On a larger scale, photogrammetric analysis shows a rapid lateral change (0.3 km) from a sand-rich, channel-dominated expression to a mud-rich, channel-poor character. These observations suggest a lower energy fluvial system focused within a possible incised valley showing that the fluvial system is being influenced primarily by eustatic forces, rather than tectonics. Subsurface data from twelve wells located north of the Northern Colorado locality show a rapid (15 km) increase in thickness (97 m to 182 m) and decrease in net-to-gross (89.3% to 65.3%). Early subsidence of the Washakie sub-basin just east of the wells could account for the rapid increase in accommodation. Another possible explanation for the rapid thickness increase to the northeast could be the presence of an incised valley. These possibilities show the complexity of the environment within which the Trail Member fluvial system deposited sediments.
4

Characterizing the Low Net-to-Gross, Fluviodeltaic Dry Hollow Member of the Frontier Formation, Western Green River Basin, Wyoming

Meek, Scott Romney 01 August 2017 (has links)
The Frontier Formation in the Green River Basin of southwestern Wyoming consists of Late Cretaceous (Cenomanian-Turonian) marine and non-marine sandstones, siltstones, mudstones and coals deposited on the western margin of the Cretaceous Interior Seaway. Tight gas reservoirs exist in subsurface fluviodeltaic sandstones in the upper Frontier Formation (Dry Hollow Member) on the north-south trending Moxa Arch within the basin. These strata crop out in hogback ridges of the Utah-Idaho-Wyoming Thrust Belt approximately 40 km west of the crest of the Moxa Arch. Detailed, quantitative outcrop descriptions were constructed using emerging photogrammetric techniques along with field observations and measured sections at five key outcrop localities along the thrust belt. Understanding the architectural style of this low net-to-gross fluvial system allows for improved reservoir prediction in this and other comparable basins. The architectural style of the Dry Hollow Member fluvial deposits varies vertically as the result of a relative shoreline transgression during Dry Hollow deposition. Amalgamated conglomerates and associated fine to coarse sandstones near the base of the section and much thinner, isolated sandstones near the top of the Dry Hollow occur in laterally extensive units that can be identified over tens of kilometers. These units also provide means to relate outcrop and subsurface stratigraphic architecture. Combined with available subsurface data, fully-realized 3D static reservoir models for use as analogs in subsurface reservoir characterization may be constructed. Grain size, reservoir thickness and connectivity of fluvial sandstones is generally greatest near the base of this member and decreases upward overall. Despite relative isolation of some channel bodies, geocellular facies modeling indicates good lateral and vertical connectivity of most channel sandstones. The Kemmerer Coal Zone, with little sandstone, divides lower and upper well-connected sandy units.
5

Fluvial Architecture and Reservoir Modeling Along the Strike Direction of the Trail Member of the Ericson Sandstone, Mesaverde Group in Southwest Wyoming

Trevino, April Anahi 01 July 2019 (has links)
The Trail Member of the upper Cretaceous Ericson Sandstone, part of the Mesaverde Group, is exposed along hundreds of square kilometers through Wyoming along the flanks of several Laramide structural uplifts. This presents a unique opportunity to study the detailed architecture based on bed-scale heterogeneity and better assess the reservoir potential of these strata in outcrop exposure on a regional-scale, and to then relate these observations to producing fields nearby. The fluvial-dominated Trail Member formed as sediments traveled from the active Sevier thrust belt to the Cretaceous Interior Seaway, forming a basinward progradational clastic wedge along a relatively high gradient. The high energy, tectonically active setting led to preservation of sand-rich, often compositionally immature fluvial strata. Though there is an abundance of sand-rich strata in the Trail Member, production from this interval has been unpredictable in current and past fields such as the Trail Unit of southwestern Wyoming.Twelve detailed stratigraphic columns were described at three sites along the eastern flank of the Rock Springs Uplift to show facies heterogeneity beyond what is often available through wells, 69 hand samples were collected for determination of porosity and permeability, and photogrammetric characterization was performed at the three sites. Average porosity decreases along strike from north to south along with net-to-gross. The vertical changes in fluvial architecture within the Trail Member reflect changes in available accommodation. While thickness of the Trail Member is highly variable, ranging between 79 to 108 meters across the study area, there is an overall trend of thickening to the south. Although the character of the Trail strata changes appreciably along strike direction, this interval is consistently rich in sand, and grain size does not change drastically along the length of observed outcrops. This study demonstrated that spatial variability in the thickness, local accommodation, porosity, and net-to-gross of the Trail Member, as well as temporal variability in the amount and character of reservoir sands and channel stacking patterns play an important role in the unpredictability of this reservoir. This study will enable reservoir modeling and aid in future exploration projects within the Trail Member and other comparable systems with similar fluvial architecture and internal heterogeneity.
6

Prediction of reservoir properties of the N-sand, vermilion block 50, Gulf of Mexico, from multivariate seismic attributes

Jaradat, Rasheed Abdelkareem 29 August 2005 (has links)
The quantitative estimation of reservoir properties directly from seismic data is a major goal of reservoir characterization. Integrated reservoir characterization makes use of different varieties of well and seismic data to construct detailed spatial estimates of petrophysical and fluid reservoir properties. The advantage of data integration is the generation of consistent and accurate reservoir models that can be used for reservoir optimization, management and development. This is particularly valuable in mature field settings where hydrocarbons are known to exist but their exact location, pay, lateral variations and other properties are poorly defined. Recent approaches of reservoir characterization make use of individual seismic attributes to estimate inter-well reservoir properties. However, these attributes share a considerable amount of information among them and can lead to spurious correlations. An alternative approach is to evaluate reservoir properties using multiple seismic attributes. This study reports the results of an investigation of the use of multivariate seismic attributes to predict lateral reservoir properties of gross thickness, net thickness, gross effective porosity, net-to-gross ratio and net reservoir porosity thickness product. This approach uses principal component analysis and principal factor analysis to transform eighteen relatively correlated original seismic attributes into a set of mutually orthogonal or independent PC??s and PF??s which are designated as multivariate seismic attributes. Data from the N-sand interval of Vermilion Block 50 field, Gulf of Mexico, was used in this study. Multivariate analyses produced eighteen PC??s and three PF??s grid maps. A collocated cokriging geostaistical technique was used to estimate the spatial distribution of reservoir properties of eighteen wells penetrating the N-sand interval. Reservoir property maps generated by using multivariate seismic attributes yield highly accurate predictions of reservoir properties when compared to predictions produced with original individual seismic attributes. To the contrary of the original seismic attribute results, predicted reservoir properties of the multivariate seismic attributes honor the lateral geological heterogeneities imbedded within seismic data and strongly maintain the proposed geological model of the N-sand interval. Results suggest that multivariate seismic attribute technique can be used to predict various reservoir properties and can be applied to a wide variety of geological and geophysical settings.
7

Prediction of reservoir properties of the N-sand, vermilion block 50, Gulf of Mexico, from multivariate seismic attributes

Jaradat, Rasheed Abdelkareem 29 August 2005 (has links)
The quantitative estimation of reservoir properties directly from seismic data is a major goal of reservoir characterization. Integrated reservoir characterization makes use of different varieties of well and seismic data to construct detailed spatial estimates of petrophysical and fluid reservoir properties. The advantage of data integration is the generation of consistent and accurate reservoir models that can be used for reservoir optimization, management and development. This is particularly valuable in mature field settings where hydrocarbons are known to exist but their exact location, pay, lateral variations and other properties are poorly defined. Recent approaches of reservoir characterization make use of individual seismic attributes to estimate inter-well reservoir properties. However, these attributes share a considerable amount of information among them and can lead to spurious correlations. An alternative approach is to evaluate reservoir properties using multiple seismic attributes. This study reports the results of an investigation of the use of multivariate seismic attributes to predict lateral reservoir properties of gross thickness, net thickness, gross effective porosity, net-to-gross ratio and net reservoir porosity thickness product. This approach uses principal component analysis and principal factor analysis to transform eighteen relatively correlated original seismic attributes into a set of mutually orthogonal or independent PC??s and PF??s which are designated as multivariate seismic attributes. Data from the N-sand interval of Vermilion Block 50 field, Gulf of Mexico, was used in this study. Multivariate analyses produced eighteen PC??s and three PF??s grid maps. A collocated cokriging geostaistical technique was used to estimate the spatial distribution of reservoir properties of eighteen wells penetrating the N-sand interval. Reservoir property maps generated by using multivariate seismic attributes yield highly accurate predictions of reservoir properties when compared to predictions produced with original individual seismic attributes. To the contrary of the original seismic attribute results, predicted reservoir properties of the multivariate seismic attributes honor the lateral geological heterogeneities imbedded within seismic data and strongly maintain the proposed geological model of the N-sand interval. Results suggest that multivariate seismic attribute technique can be used to predict various reservoir properties and can be applied to a wide variety of geological and geophysical settings.

Page generated in 0.0348 seconds