• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study of the combined roles of the Silica/Oil/UHMWPE formulation and process parameters on morphological and electrical properties of battery Separators / Élaboration du séparateur dans les batteries au plomb : aspects fondamentaux de formulation et de mise en oeuvre

Toquet, Fabien 17 February 2017 (has links)
Ce travail s'est concentré sur la compréhension de l'influence de la formulation et plus spécifiquement de la silice précipitée sur la résistivité électrique de séparateurs en polyéthylène destinés à des batteries au plomb. Les séparateurs de batteries en polyéthylène sont composés de silice précipitée, de polyéthylène ultra haute masse molaire (UHMWPE) et d'huile organique. La première partie de ce travail a été d'élaborer à l'échelle du laboratoire, des membranes modèles en polyéthylène. La seconde a été de comprendre l'influence de certains facteurs sur les propriétés structurales et physicochimiques des membranes. Ces facteurs sont principalement la quantité d'huile, la quantité et le grade de silice précipitée, les conditions de température lors de la cristallisation de la membrane et le mode de mise en œuvre utilisé. Les influences des quantités d'huile et de silice sur la cristallisation du polyéthylène sont méticuleusement étudiées, montrant que l'huile aide à augmenter la cristallinité finale de l'UHMWPE et que la silice joue un rôle de réservoir d'huile. Il a également été mis en évidence que la quantité ainsi que le grade de silice influencent la quantité de porosité de la membrane mouillable par l'électrolyte. La présence de silice en surface des pores est responsable de la mouillabilité de la membrane. Un paramètre empirique a donc été proposé dans le but de pouvoir quantifier l'efficacité de l'état de dispersion/distribution de la silice précipitée dans la membrane. Pour terminer, pour une formulation et un même mode de mise en œuvre, il est possible de discriminer l'efficacité des grades de silice précipitée pour l'application séparateur de batterie / This work is devoted to understand the effect of the formulation and more specifically of the precipitated silica on the resistivity of the PE-separators. The PE-separators are designed for the lead-acid batteries. PE-separators are composed of precipitated silica, ultrahigh molecular weight polyethylene (UHMW-PE) and organic oil. The first part of this work was to elaborate PE-separator models at a laboratory scale. Then, the factors impacting the structural and physico-chemicals properties of PE-separators were investigated. These factors are mainly the amounts of oil, precipitated silica, the grade of the precipitated silica, the temperature conditions of crystallization and the device used to elaborate the membrane. The influence of the amounts of oil and precipitated silica on the crystallization of the polyethylene wasthoroughly described showing that the oil helps to increase the final crystallinity of UHMWPE and that the silica plays a role of oil reservoir. Moreover, it was shown that the amount and the grade of precipitated silica have an influence on the wettable part of the porosity of the PE-separators. The coating of the pores by the precipitated silica is responsible of the wettability of the membranes by the electrolyte. Thus, an empirical parameter has been proposed in order to quantify the efficiency of the dispersion and distribution of the precipitated silica in the membrane. The more the membranes are wettable by the electrolyte the more the resistivity of the membranes is decreased. To finish, for a same amount of components and a same method of processing, it is possible to discriminate the efficiency of each grade of precipitated silica for the battery separator application
12

Verfahren zur Herstellung hierarchisch strukturierter poröser Membranen

Ebert, Susann 21 September 2011 (has links)
Poröse Polymermembranen spielen in der Industrie und Forschung als Filtrationsmedien eine bedeutende Rolle. Eine besondere Form dieser Membranen sind die sogenannten Mikrosiebe, die sich im Vergleich zu herkömmlichen Filtermedien durch eine Membrandicke kleiner als der Durchmesser der Poren, eine enge Porengrößenverteilung und eine hohe Porendichte auszeichnen. Dies führt zu einer hohen Selektivität und Permeabilität dieser Mikrosiebe. Aufgrund der geringen Membrandicke sind sie jedoch, beispielsweise beim Einsatz als Filtermedien, sehr empfindlich gegenüber mechanischer Belastung und benötigen üblicherweise eine zusätzliche (externe) Stützstruktur. Die vorliegende Arbeit beschäftigt sich mit der Herstellung mikrosiebartiger Polymermembranen, bei denen die Darstellung der späteren Trennschicht und Stützstruktur in einem Prozess erfolgt – den hierarchisch strukturierten porösen Membranen. Es werden zwei neue Verfahren zur Darstellung dieser Membranen vorgestellt. Im ersten Verfahren wird das Prinzip der partikel-assistierten Benetzung mit den sogenannten Kondensationsmustern (Breath Figures Patterns), im zweiten Verfahren mit der Tintenstrahltechnik kombiniert. In beiden Fällen enthalten die resultierenden Polymermembranen die gewünschte hierarchische Porenstruktur, d. h. sie weisen eine Trennschicht mit submikrometergroßen Poren auf der einen Seite und eine Stützstruktur mit größeren, mikrometergroßen Poren auf der anderen Seite auf. Um die Membranen, welche durch Kombination der partikel-assistierten Benetzung mit den Kon-densationsmustern hergestellt werden, für einen möglichen Einsatz als Filtrationsmedium zu charakterisieren, werden Untersuchungen bezüglich des Permeatflusses und der Permeabilität sowie zum Rückhaltevermögen durchgeführt.:Inhaltsverzeichnis iii Verzeichnis der verwendeten Abkürzungen und Symbole vi Abkürzungen vi Symbole ix 1 Einleitung und Motivation der Arbeit 1 2 Verfahren zur Herstellung hierarchisch strukturierter Membranen durch Kombination von Kondensationsmustern mit dem Prinzip der partikel-assistierten Benetzung 10 2.1 Einleitung 10 2.2 Ergebnisse 15 2.3 Zusammenfassung 24 2.4 Experimenteller Teil 25 2.4.1 Synthese der Siliziumdioxid-Partikel 25 2.4.2 Membranherstellung 26 2.4.2.1 Herstellung der Partikel-Polymer-Dispersionen 26 2.4.2.2 Herstellung der Membranen 28 2.4.3 Rasterelektronenmikroskopische Untersuchung 29 2.4.4 Verwendete Chemikalien 30 2.4.4.1 Herstellung der Siliziumdioxid-Partikel nach Stöber 30 2.4.4.2 Herstellung der Membranen 30 3 Untersuchung der Filtrationseigenschaften der hierarchisch strukturierten porösen Membranen 31 3.1 Einleitung 31 3.1.1 Filtration 31 3.1.2 Ultrafiltration und Mikrofiltration - Prozessführung 36 3.1.2.1 Dead-End-Filtration 37 3.1.2.2 Querstrom-Filtration 40 3.1.3 Membranfouling 41 3.1.4 Mikrofiltration mit Mikrosieben 42 3.2 Ergebnisse 45 3.2.1 Bestimmung der Porosität 46 3.2.2 Bestimmung der Leistungsfähigkeit der hierarchisch strukturierten Membranen 49 3.2.3 Bestimmung des Rückhaltevermögens der hierarchisch strukturierten Membranen 56 3.2.3.1 Filtration von Hefezellen 56 3.2.3.2 Filtration von Rhodamin B markierten Melamin-Partikeln 58 3.3 Zusammenfassung 60 3.4 Experimenteller Teil 62 3.4.1 Herstellung poröser Membranen für Filtrationsversuche 62 3.4.2 Permeatfluss- und Permeabilitätsmessungen 62 3.4.3 Filtrationsmessungen 63 3.4.3.1 Filtration von Hefezellen 63 3.4.3.2 Filtration von Rhodamin B markierten Melamin-Partikeln 64 3.4.4 Rasterelektronenmikroskopische Untersuchung 64 3.4.5 Verwendete Chemikalien 65 3.4.5.1 Herstellung der Membranen 65 3.4.5.2 Permeatfluss- und Permeabilitätsmessungen 65 3.4.5.3 Filtrationsmessungen 66 3.5 Anhang 67 3.5.1 Anhang 3.1 - Ergebnisse der Porositätsbestimmung 67 3.5.2 Anhang 3.2 - Ergebnisse der Bestimmung der Permeatflüsse und Permeabilitäten 78 3.5.3 Anhang 3.3 - Ergebnisse der Filtrationsmessungen 83 4 Herstellung poröser Membranen mittels Inkjet-Technologie 86 4.1 Einleitung 87 4.1.1 Inkjet-Technologie (Tintenstrahltechnik) 87 4.1.2 Ober- und Grenzflächenthermodynamik 91 4.1.3 Herstellung poröser Membranen mit Hilfe der Inkjet-Technologie 96 4.2 Ergebnisse 97 4.2.1 Druckprozess 98 4.2.2 Membranherstellungsprozess 104 4.2.2.1 Membranherstellung mittels Filmziehrahmen 105 4.2.2.2 Membranherstellung mittels Ringmethode 107 4.2.2.3 Vergleich zwischen theoretischem und experimentell ermitteltem Porendurchmesser 110 4.2.2.4 Porosität 116 4.3 Zusammenfassung 118 4.4 Experimenteller Teil 119 4.4.1 Herstellen der Substrate 119 4.4.2 Druckprozess 119 4.4.2.1 Herstellung der Tinte und Befüllen der Patrone 120 4.4.2.2 Einstellung des Druckers 120 4.4.3 Membranherstellung 121 4.4.3.1 Herstellung der Polymerlösungen 121 4.4.3.2 Herstellung und Aufarbeitung der Membranen 122 4.4.4 Rasterelektronenmikroskopische Untersuchung 123 4.4.5 Verwendete Chemikalien 124 4.4.5.1 Herstellung der Substrate 124 4.4.5.2 Druckprozess 124 4.4.5.3 Membranherstellung 124 4.5 Anhang 125 5 Verfahren zur Herstellung hierarchisch strukturierter Membranen durch Kombination der Inkjet-Technologie mit dem Prinzip der partikel-assistierten Benetzung 127 5.1 Einleitung 128 5.1.1 Dünne Polymerfilme 128 5.1.2 Dynamik des Verdunstungsprozesses 129 5.2 Ergebnisse 132 5.2.1 Einfluss der Partikel auf die Membranherstellung 134 5.2.2 Einfluss der Oberflächenfunktionalisierung der Partikel und des Partikel : Polymer-Verhältnisses 137 5.2.3 Einfluss des Lösungsmittels 144 5.2.3.1 Membranherstellung mit einem Lösungsmittelgemisch aus Chloroform und 1-Dekalin 146 5.2.3.2 Membranherstellung mit einem Lösungsmittelgemisch aus Chloroform und 3-Pentanon 148 5.2.3.3 Porosität 153 5.3 Zusammenfassung 155 5.4 Experimenteller Teil 158 5.4.1 Herstellung der Substrate 158 5.4.2 Druckprozess 158 5.4.2.1 Herstellung der Tinte und Befüllen der Patrone 159 5.4.2.2 Einstellung des Druckers 159 5.4.3 Membranherstellung 160 5.4.3.1 Herstellung der Siliziumdioxid-Partikel 160 5.4.3.2 Herstellung der Partikel-Polymer-Dispersion 162 5.4.3.3 Herstellung und Aufarbeitung der Membranen 164 5.4.4 Rasterelektronenmikroskopische Untersuchung 164 5.4.5 Verwendete Chemikalien 166 5.4.5.1 Synthese der Siliziumdioxid-Partikel 166 5.4.5.2 Herstellung der Substrate 167 5.4.5.3 Druckprozess 167 5.4.5.4 Membranherstellung 167 6 Zusammenfassung 168 7 Literatur 172 Abbildungsverzeichnis 180 Tabellenverzeichnis 184 Selbständigkeitserklärung 185 Circum Vitae 186 8 Literatur 191

Page generated in 0.0723 seconds