• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pillar[n]arene-based Porous and Smart Materials

Khalil Cruz, Laila Elizabeth 26 April 2022 (has links)
Pillar[n]arenes are a class of macrocycles with outstanding properties given by its electron rich and symmetric cavity, and facile functionalization that allows to tune its solubility and host-guest properties. In this work, the versatility of pillar[n]arenes for the design of porous materials is studied. Pillar[n]arenes are stable to guest removal, giving solvent-free phases and thus resulting in permanent porous structures. From simple ethyl pillar[5,6]arenes, nonporous adaptive crystals are obtained and studied for the recognition and separation of butanol isomers. The cavity size of the pillar[n]arene hosts and the linear or branched characteristic of the butanol isomers influences the assembly of the pillararene to selectively adsorb an isomer. Then, an A1/A2 benzaldehyde-functionalized pillar[5]arene is used as a building block for the synthesis of an imine porous organic cage, which would result in material with intrinsic and extrinsic porosity. Finally, a lipoic acid modified pillar[5]arene is implemented as ligand for nanoclusters, improving their stability. Taking advantage of the cavity of the pillar[5]arene, a host-guest complex is formed, enhancing the optical properties of nanoclusters.
2

Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE)

Egleston, B.D., Brand, M.C., Greenwell, F., Briggs, M.E., James, S.L., Cooper, A.I., Crawford, Deborah E., Greenaway, R.L. 25 May 2020 (has links)
Yes / The continuous and scalable synthesis of a porous organic cage (CC3), obtained through a 10-component imine polycondensation between triformylbenzene and a vicinal diamine, was achieved using twin screw extrusion (TSE). Compared to both batch and flow syntheses, the use of TSE enabled the large scale synthesis of CC3 using minimal solvent and in short reaction times, with liquid-assisted grinding (LAG) also promoting window-to-window crystal packing to form a 3-D diamondoid pore network in the solid state. A new kinetically trapped [3+5] product was also observed alongside the formation of the targeted [4+6] cage species. Post-synthetic purification by Soxhlet extraction of the as-extruded ‘technical grade’ mixture of CC3 and [3+5] species rendered the material porous. / Engineering and Physical Sciences Research Council (EPSRC) under the Grants EP/R005710/1 (AIC) and EP/R005540/1 (SLJ), and for an EPSRC Summer Vacation Bursary at the University of Liverpool (FG, RLG). We also thank the European Research Council under FP7, RobOT, ERC Grant Agreement No. 321156 (AIC), for financial support. RLG thanks the Royal Society for a University Research Fellowship.

Page generated in 0.093 seconds