• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Suitability of Hybrid Waveforms for Advanced Gravitational Wave Detectors

MacDonald, Ilana 13 January 2014 (has links)
The existence of Gravitational Waves from binary black holes is one of the most interesting predictions of General Relativity. These ripples in space-time should be visible to ground-based gravitational wave detectors worldwide in the next few years. One such detector, the Laser Interferometer Gravitational-wave Observatory (LIGO) is in the process of being upgraded to its Advanced sensitivity which should make gravitational wave detections routine. Even so, the signals that LIGO will detect will be faint compared to the detector noise, and so accurate waveform templates are crucial. In this thesis, we present a detailed analysis of the accuracy of hybrid gravitational waveforms. Hybrids are created by stitching a long post-Newtonian inspiral to the late inspiral, merger, and ringdown produced by numerical relativity simulations. We begin our investigation with a study of the systematic errors in the numerical waveform, and errors due to hybridization and choice of detector noise. For current NR waveforms, the largest source of error comes from the unknown high-order terms in the post-Newtonian waveform, which we first explore for equal-mass, non-spinning binaries, and also for unequal-mass, non-spinning binaries. We then consider the potential reduction in hybrid errors if these higher-order terms were known. Finally, we investigate the possibility of using hybrid waveforms as a detection template bank and integrating NR+PN hybrids into the LIGO detection pipeline.
2

The Suitability of Hybrid Waveforms for Advanced Gravitational Wave Detectors

MacDonald, Ilana 13 January 2014 (has links)
The existence of Gravitational Waves from binary black holes is one of the most interesting predictions of General Relativity. These ripples in space-time should be visible to ground-based gravitational wave detectors worldwide in the next few years. One such detector, the Laser Interferometer Gravitational-wave Observatory (LIGO) is in the process of being upgraded to its Advanced sensitivity which should make gravitational wave detections routine. Even so, the signals that LIGO will detect will be faint compared to the detector noise, and so accurate waveform templates are crucial. In this thesis, we present a detailed analysis of the accuracy of hybrid gravitational waveforms. Hybrids are created by stitching a long post-Newtonian inspiral to the late inspiral, merger, and ringdown produced by numerical relativity simulations. We begin our investigation with a study of the systematic errors in the numerical waveform, and errors due to hybridization and choice of detector noise. For current NR waveforms, the largest source of error comes from the unknown high-order terms in the post-Newtonian waveform, which we first explore for equal-mass, non-spinning binaries, and also for unequal-mass, non-spinning binaries. We then consider the potential reduction in hybrid errors if these higher-order terms were known. Finally, we investigate the possibility of using hybrid waveforms as a detection template bank and integrating NR+PN hybrids into the LIGO detection pipeline.
3

Studying gravitational waves of compact binary systems using post-Newtonian theory / Études des ondes gravitationnelles des binaires compactes à l’approximation post-newtonienne

Marchand, Tanguy 15 June 2018 (has links)
La détection ainsi que l’analyse des ondes gravitationnelles émises par les systèmes binaires d’objets compacts reposent sur notre capacité à faire des prédictions précises au sein de la théorie de la relativité générale. Dans cette thèse, nous utilisons la théorie post-newtonienne (PN), et en particulier le formalisme connu sous le nom de Blanchet-Damour-Iyer, afin d’étudier de tels systèmes. La finalité des différents calculs réalisés au sein de cette thèse est d’obtenir la phase du signal gravitationnel à l’ordre 4,5PN, et les résultats que nous présentons nous rapprochent fortement de cet objectif. Tout d’abord, nous calculons les sillages d’ondes à l’ordre 3 dans le champ radiatif, ce qui nous permet d’obtenir le coefficient 4,5PN du flux d’énergie émis par des systèmes binaires compacts sans spin dans le cas d’orbites circulaires. Puis, nous calculons la dernière ambiguïté apparaissant dans les équations du mouvement de deux corps compacts sans spin à l’ordre 4PN, ce qui nous permet d’obtenir la première dérivation à partir de principes fondamentaux de ce résultat. Nous étudions alors en détail les différentes quantités conservées générées par cette dynamique. Enfin,nous présentons un premier résultat préliminaire du quadrupôle de masse source à l’ordre 4PN, ce qui constitue l’une des étapes cruciales dans l’obtention de la phase à l’ordre 4.5PN. / The detection and the analysis of gravitational waves emitted by compact binary systems rely on our ability to make accurate predictions within general relativity. In this thesis, we use the post-Newtonian (PN) formalism, and in particular the Blanchet-Damour-Iyer framework, to study the dynamics and the emission of gravitational waves of such systems. The different computations that we performed are motivated by our aim to obtain the phase of the gravitational wave signal at the 4.5PN order. In that regard, crucial steps have been achieved within this thesis. First of all, we compute the third-order tail effects in the radiation field, yielding the 4.5PN coefficient of the energy flux for binaries of non-spinning objects in circular orbits. Besides, we determine the remaining ambiguity of the 4PN Lagrangian of two spinless compact bodies. This result completes the first derivation from first principles of the 4PN equations of motion. Then we comprehensively study the conserved quantities of the 4PN dynamics. Finally, we provide a preliminary result of the 4PN source mass quadrupole, which constitutes one of the crucial steps towards the computation of the 4.5PN phase.
4

Einstein Aether Gravity

Akbaba, Esin 01 September 2009 (has links) (PDF)
In this thesis, we review some basic properties of the Einstein-aether gravity. We derive the field equations from an action and study a subclass of this theory corresponding to the Einstein-Maxwell like theory. We also show that the G&ouml / del type metrics are also exact solutions of this theory. Furthermore, we determine the observational constraints on the dimensionless preferred parameters of this theory using the parametrized post- Newtonian formalism. We stress that none of calculations and discussions are original in this thesis.
5

Μετανευτώνειες προσεγγίσεις στους αστέρες νετρονίων

Φωτόπουλος, Αθανάσιος 02 March 2015 (has links)
Το αντικείμενο της εργασίας αυτής είναι η μελέτη των μετανευτώνειων προσεγγίσεων στο πλαίσιο της Γενικής Σχετικότητας, με έμφαση στους αστέρες νετρονίων. Λόγω του οτι, η μελέτη των αστέρων νετρονίων βασίζεται στην υδροδυναμική περιγραφή της ύλης, το κύριο ενδιαφέρον μας αφορά στον τρόπο που εισάγονται οι μετανευτώνειες προσεγγίσεις στις υδροδυναμικές εξισώσεις της Γενικής Σχετικότητας. Στο πρώτο κεφάλαιο παρουσιάζονται ορισμένα θεωρητικά στοιχεία γύρω απο φυσικά χαρακτηριστικά και τις ιδιότητες των συμπαγών αστέρων. Στο δεύτερο κεφάλαιο παρουσιάζονται τα γενικά χαρακτηριστικά των καταστατικών εξισώσεων των συμπαγών αστέρων, με έμφαση στην πολυτροπική καταστατική εξίσωση. Στο τρίτο κεφάλαιο παρουσιάζεται η θεωρία των μετανευτώνειων προσεγγίσεων, καθώς και οι μετανευτώνειες εξισώσεις πρώτης τάξης της υδροδυναμικής, στη Γενική Σχετικότητα όπως εισήχθησαν απο τον Chandrasekhar. Στο τέταρτο κεφάλαιο παρουσιάζεται η διαταρακτική μέθοδος που χρησιμοποιείται απο τους Fahlman και Anand, για την μελέτη των περιστρεφόμενων πολυτρόπων στο πλαίσιο της πρώτης μετανευτώνειας προσέγγισης στη Γενική Σχετικότητα. Στο πέμπτο κεφάλαιο παρουσιάζεται η μετανευτώνεια προσέγγιση δεύτερης τάξης όπως διατυπώθηκε απο τους Chandrasekhar και Nutku. Στο έκτο, και τελευταίο, κεφάλαιο παρουσιάζεται ένα υπολογιστικό αλγεβρικό πακέτο για μετανευτώνειους υπολογισμούς στη Γενική Σχετικότητα, το PROCRUSTES. Με την βοήθεια του πακέτου αυτού υπολογίσαμε διάφορες ποσότητες στη δεύτερη μετανευτώνεια προσέγγιση, όπως τον τανυστή ενέργειας - ορμής, 𝑇𝑖𝑗, τον τανυστή Ricci, 𝑅𝑖𝑗, τις εξισώσεις κίνησης, Τ𝑖𝑗;𝑗 = 0, και άλλες. Το PROCRUSTES είναι ένα πολύ χρήσιμο εργαλείο στη μετανευτώνεια μελέτη καθώς μπορεί κανείς να παράξει τις περίπλοκες εκφράσεις διαφόρων ποσοτήτων σε ελάχιστο χρόνο και χωρίς την πιθανότητα λάθους. Επίσης, με την βοήθεια του πακέτου αυτού, υπολογίσαμε τις αναλυτικές εκφράσεις των εξισώσεως κίνησης, Τ𝑖𝑗;𝑗 = 0, στην δεύτερη μετανευτώνεια προσέγγιση. Με κατάλληλη μετατροπή των εκφράσεων αυτών, μπορούμε να εφαρμόσουμε την μέθοδο των Fahlman και Anand, με σκοπό την μελέτη των περιστερόμενων πολυτρόπων στη μετανευτώνεια προσέγγιση δεύτερης τάξης. Στο τέλος της εργασίας παρατίθεται ένα συμπλήρωμα με τη δομή του προγράμματος και ορισμένες απο τις ποσότητες που υπολογίστηκαν στο πλαίσιο της εργασίας. / The main subject of my master thesis is the study of,the post-Newtonian approximations (PNA) in General Relativity (G-R), mainly those that concern the neutron stars. Owing to the study of neutron stars is on the hydrodynamic description of matter, our main interest lies uponthe way the PNA affects the hydrodynamic equations of G-R. In the first chapter there is presented the main theory around the physical attributes of compact stars. The second chapter reffers to the general features of the equations of state (EoS) of compact stars, giving emphasis to the polytropic EoS. In the yhird chapter, there is presented the theory of the PNA. There are also presented the the hydrodynamic equations in the PNA as the were introduced by Chandrasekhar. The fourth chapter is dedicated to the presentation of the method that was introduced by Fahlman and Anand, on the study of rotating polytropes in the PNA to G-R. The fifth chapter focuses on the second PNA as it formulated by Chandrasekhar and Nutku. During the sixth and final chapter there is presented a computer algebra package for post-Newtonian calculations in G-R, the PROCRUSTES. Whith the aid of thiw package, we calculated several quantities in the second PNA, as for example the E-M tensor 𝑇𝑖𝑗„ the Ricci tensor 𝑅𝑖𝑗 and the equations of motion (EoM) Τ𝑖𝑗 ;𝑗 = 0. PROCRUSTES is a very useful tool for the post-Newtonian study, as someone can produce the compicated equations of several quantities in no time and eliminating the possibility of making some mistake during the calculation. Moreover, using PROCRUSTES we calculated the expressions of the EoM’s in the second PNA. Under appropriate transformation of these expressions, we are able to apply the method of Fahlman and Anand onto these equations with a view to the study of rotating polytropes in the second PNA. At the end of this work there is quoted a supplement with the structure of the programm we used, along with some of the quantities that were calculated during this work.
6

Μελέτη των περιστρεφομένων αστέρων νετρονίων με έμφαση στη μέθοδο των μετανευτωνείων προσεγγίσεων / A study of the rotating neutron stars with emphasis on the method of the post-Newtonian approximation

Καραγεωργόπουλος, Βασίλειος 27 March 2012 (has links)
Κύριο αντικείμενο μελέτης της παρούσας μεταπτυχιακής διπλωματικής εργασίας είναι οι περιστρεφόμενοι αστέρες νετρονίων. Λόγω του ότι οι κλασικές διαταρακτικές μέθοδοι που εφαρμόζονται για την εύρεση της ακτίνας ενός περιστρεφόμενου πολυτροπικού μοντέλου περιορίζονται, από την επιφάνεια του αστέρα, αναπτύξαμε μία μέθοδο για τον υπολογισμό ποσοτήτων πέραν αυτού του ορίου. Αυτή η γενικευμένη μέθοδος χρησιμοποιεί τις μετανευτώνειες παραμέτρους ως όρους διαταραχής. Υλοποιώντας έναν κώδικα σε γλώσσα προγραμματισμού Fortran, υπολογίσαμε εκτεταμένους πίνακες ποσοτήτων και σταθερών. Μέσω της γενικευμένης αυτής μεθόδου επιτυγχάνεται η εύρεση της ακριβούς τιμής της ακτίνας ενός τέτοιου μοντέλου καθώς και ο καθορισμός της κρίσιμης παραμέτρου περιστροφής, η οποία αποτελεί μία μετανευτώνεια παράμετρο. Ο υπολογισμός της κρίσιμης παραμέτρου διαταραχής επιτυγχάνεται με ευκολία, κυρίως εκ του λόγου ότι η μέθοδος έχει υπολογίσει εκτεταμένους πίνακες συναρτησιακών τιμών. Οι υπολογιζόμενες κρίσιμες παράμετροι διαταραχής είναι μεγαλύτερες των αντιστοίχων τιμών της βιβλιογραφίας (κυρίως σε σύγκριση με τους Fahlman-Anand [55]), και φαίνεται να συμφωνούν καλύτερα με τις τιμές που υπολογίζονται από τις λεγόμενες επαναληπτικές μεθόδους. Τα αποτελέσματα επαληθεύουν με μεγάλη ακρίβεια τιμές συναρτήσεων και παραμέτρων σε σύγκριση με την κλασική βιβλιογραφία. Η παρούσα εργασία χωρίζεται σε πέντε μέρη, τα οποία αναπτύσσονται στα κεφάλαια 1, 2, 3, 4 και 5. Στο πρώτο κεφάλαιο, περιγράφεται ο αστέρας νετρονίων ως αστροφυσικό αντικείμενο. Δίνεται βάρος τόσο στη δομή του όσο και στα φυσικά χαρακτηριστικά του. Η ύπαρξη των αστέρων νετρονίων είναι απόλυτα συνδεδεμένη με τους πάλσαρς. Αυτοί αποτελούν ένα «ζωντανό» παράδειγμα περιστρεφομένων αστέρων νετρονίων; έτσι, γίνεται αναφορά στις φυσικές ιδιότητες και στις διεργασίες που πραγματοποιούνται σε αυτούς. Στο δεύτερο κεφάλαιο, αναφερόμαστε στις καταστατικές εξισώσεις που διέπουν το εσωτερικό των αστέρων νετρονίων, και στην έννοια του πολυτρόπου. Αφενός μεν, διότι δεν μπορεί να πραγματοποιηθεί μία μελέτη για αυτούς τους αστέρες χωρίς να υιοθετηθεί κάποια καταστατική εξίσωση, αφετέρου δε διότι μία από τις πλέον ενδεικτικές για την περιγραφή τους (και την οποία εμείς υιοθετούμε) είναι αυτή του πολυτρόπου. Επιπλέον, αναλύουμε τις εξισώσεις που διέπουν το αδιατάρακτο πολυτροπικό μοντέλο, όπως και αυτές που περιγράφουν το αντίστοιχο διαταραγμένο, σύμφωνα με τη θεωρία που ανέπτυξε ο Chandrasekhar. Στο τρίτο κεφάλαιο, χρησιμοποιούμε τη Γενική Θεωρία της Σχετικότητας στη μελέτη του πολυτροπικού μοντέλου, εστιάζοντας κυρίως στον τρόπο με τον οποίο τροποποιείται η κλασική θεώρηση, στο πώς μετασχηματίζονται η βασικές ποσότητες του μοντέλου, και στο πώς προκύπτουν οι σχέσεις της μετανευτώνειας προσέγγισης. Εξάγουμε τις μετανευτώνειες εξισώσεις της υδροδυναμικής και αναπτύσσουμε το διαταρακτικό μοντέλο επίλυσης, από το οποίο προκύπτουν οι εξισώσεις που επιλύουμε αριθμητικά. Στο τέταρτο κεφάλαιο, κάνουμε αναφορά στις διάφορες αριθμητικές μεθόδους που έχουν αναπτυχθεί για την μελέτη του σχετικιστικά περιστρεφόμενου πολυτροπικού μοντέλου. Στο πέμπτο κεφάλαιο, παρουσιάζουμε πίνακες αποτελεσμάτων και ενδιαφέρουσες γραφικές παραστάσεις. Δίνουμε επίσης ορισμένες αλγοριθμικές λεπτομέρειες για το πρόγραμμά μας. Συγκεκριμένα, γενικεύουμε τη μέθοδο των μετανευτωνείων προσεγγίσεων και αναλύουμε τα πλεονεκτήματα της. Ακολούθως, παραθέτουμε μία περιγραφή της αριθμητικής διαπραγμάτευσης της μεθόδου και την πορεία υλοποίησής της. Τέλος, παρατίθενται οι πίνακες των αποτελεσμάτων και τα τελικά συμπεράσματα. / In the present Thesis, we study rotating neutron stars. Due to the fact that the classical perturbation methods implemented to compute the radius of a polytropic rotating model are restricted by the star's surface, we develop a method for continuing integrations beyond this limit. This general approach utilises the postnewtonian parameters in terms of disturbance. By the application of a code written in Fortran, we calculate extensive tables of quantities and constants. Furthermore, we compute the radius as well as the critical rotation parameter, which plays the role of a postnewtonian term. This Thesis is organized in five chapters. In the first chapter, the neutron star is presented as an astrophysical object. Its structure and physical characteristics are of a great importance. Moreover, the existence of neutron stars is linked to pulsars, which are "living" examples of rotating neutron stars. Therefore, the physical characteristics of these objects are discussed in this chapter. The second chapter refers to the equations that describe the structure of the neutron stars and to the concept of polytropes. First, due to the difficulty in implementing a study for these stars without the adoption of any equation of state as well as due to the most indicative one for their description which is that of the polytrope. Second, the equations that refer to the undistorted and those that describe the corresponding distorted configurations are analysed in this chapter, in accordance with Chandrasekhar's perturbation theory. In the third chapter, the General Theory of Relativity is used to the study of the polytropic model, focusing on how the classical theory is corrected, on how the basic model's quantities are transformed and on how the equations of the postnewtonian approach are derived. The equations to be solved result from the latter ones. Furthermore, a a discussion on the various numerical methods that have been developed for studying the relativistic rotating polytopric model is given in the fourth chapter. In the fifth chapter of this Thesis, a number of tables illustrating results as well as some interesting diagrams are included. Certain algorithmic details for our program are given. We also discuss the generalisation of the postnewtonian approach and its advantages.
7

Modely hmoty v obecné relativitě s klesajícím počtem symetrií / Matter Models in General Relativity with a Decreasing Number of Symmetries

Gürlebeck, Norman January 2011 (has links)
Title: Matter Models in General Relativity with a Decreasing Number of Sym- metries Author: Norman Gürlebeck Institute: Institute of theoretical physics Supervisor: Prof. RNDr. Jiří Bičák, DrSc., dr.h.c. Abstract: We investigate matter models with different symmetries in general relativity. Among these are thin (massive and massless) shells endowed with charge or dipole densities, dust distributions and rotating perfect fluid solutions. The electromagnetic sources we study are gravitating spherical symmetric condensers (including the implications of the energy conditions) and arbitrary gravitating shells endowed with a general test dipole distribution. For the latter the Israel formalism is extended to cover also general discontinuous tangential components of the electromagnetic test field, i.e., surface dipole densities. The formalism is applied to two examples and used to prove some general properties of dipole distributions. This is followed by a discussion of axially symmetric, stationary rigidly rotating dust with non-vanishing proper volume. The metric in the interior of such a configuration can be determined completely in terms of the mass density along the axis of rotation. The last matter models we consider are non-axially symmetric, stationary and rotating perfect fluid solutions. This is done with a...
8

Sur le problème à deux corps et le rayonnement gravitationnel en théories scalaire-tenseur et Einstein-Maxwell-dilaton / On the motion and gravitational radiation of binary systems in scalar-tensor and Einstein-Maxwell-dilaton theories

Julié, Félix-Louis 25 September 2018 (has links)
Avec la naissance de l’"astronomie gravitationnelle", vient l’opportunité inédite de tester la relativité générale et ses alternatives dans un régime de champ fort jamais observé jusqu’alors : celui de la coalescence d’un système binaire d’objets compacts. Cette thèse propose d’étudier le problème du mouvement ainsi que du rayonnement gravitationnel d’un tel système en gravités modifiées, en y adaptant et en généralisant certains développements analytiques clés de la relativité générale. On montre d’abord comment étendre le formalisme "effective-one-body" (EOB) à une large classe de gravités modifiées, parmi lesquelles les théories scalaire-tenseur. Dans ces dernières, l’interaction gravitationnelle est modifiée par l’ajout d’un degré de liberté scalaire (sans masse) à la relativité générale. Le lagrangien à deux corps correspondant étant connu à l’ordre post-post-keplerien, nous construisons un hamiltonien EOB associé, décrivant le mouvement d’une particule test dans des champs effectifs. Ceci permet de simplifier la dynamique à deux corps et d’en définir une resommation ; et ainsi, d’en explorer le régime de champ fort, près de la coalescence du système. On "s’attaque" ensuite, et pour la première fois, à la description analytique d’un système binaire de trous noirs "chevelus", afin d’obtenir les formes d’ondes gravitationnelles (EOB) associées ; et ce, sur l’exemple simple des théories Einstein-Maxwell-dilaton, qui généralisent les théories scalaire-tenseur par l’ajout d’un champ vectoriel (sans masse). Pour ce faire, on calcule le lagrangien à deux corps à l’ordre post-keplerien ainsi que le flux d’énergie rayonnée à l’infini à l’ordre quadrupolaire. Tout comme en relativité générale, ces développements reposent sur la description de la trajectoire des trous noirs par les lignes d’univers de particules ponctuelles, décrites par une action "skeleton" généralisant celle, géodésique, de la relativité générale. Enfin, à l’aide des "superpotentiels" de Katz, que l’on généralise pour définir la masse (nœtherienne) d’un trou noir à "cheveux" vectoriel et scalaire, on montre que la première loi de la thermodynamique qui en découle est particulièrement adaptée, lorsqu’un trou noir est membre d’un système binaire, pour en décrire les réajustements éventuels sous l’influence d’un compagnon lointain. La thermodynamique des trous noirs est alors utilisée pour interpréter et discuter du domaine de validité de leur "skeletonisation". / With the birth of "gravitational wave astronomy" comes the opportunity to test general relativity and its alternatives in a strong field regime that had never been observed so far: that of the coalescence of a compact binary sytem. This thesis studies the problem of motion and gravitational radiation from such systems in modified gravities, by adapting some of the key analytical tools that were first developed in the context of general relativity. First, we show how to widen the "effective-one-body" (EOB) formalism to a large class of modified gravities, including, e.g., scalar-tensor theories. In the latter, the gravitational interaction is described by supplementing general relativity with a (massless) scalar degree of freedom. The corresponding two-body lagrangian being known at post-post-keplerian order, we build an associated EOB hamiltonian, which describes the motion of a test particle orbiting in effective external fields. This enables to simplify and resum the two-body dynamics; and hence, to explore the strong-field regime near merger. We then "tackle", for the first time, the analytical description of "hairy" binary black hole systems, and obtain their (EOB) gravitational waveform counterparts in Einstein-Maxwell-dilaton theories, which generalize scalar-tensor theories by means of a (massless) vector field. To that end, we derive the two-body lagrangian at post-keplerian order as well as the energy flux radiated at infinity at quadrupolar order. As in general relativity, our developments rely on the phenomenological description of the black hole’s trajectories as worldlines of point particles that are, in turn, described by a "skeleton" action generalizing that of general relativity. Finally, we develop a formalism based on Katz’ "superpotentials" to define the mass (as a nœther charge) of a black hole that is endowed with vector and scalar "hair". We then deduce the first law of thermodynamics, which is particularly suitable to describe its readjustments when interacting with a faraway companion. Black hole thermodynamics is lastly shown to be a powerful tool to interpret and discuss the scope of their "skeletonization".
9

Gravitational Waves From Inspiralling Compact Binaries : 3PN Polarisations, Angular Momentum Flux And Applications To Astrophysics And Cosmology

Sinha, Siddhartha January 2008 (has links)
Binary systems comprising of compact objects like neutron stars (NS) and/or black holes (BH) lose their energy and angular momentum via gravitational waves (GW). Radiation reaction due to the emission of GW results in a gradual shrinking of the binary orbit and an accompanying gradual increase in the orbital frequency. The preliminary phase of the binary evolution when the radiation-reaction time-scale is much larger than the orbital time-scale is called the inspiral phase. GW emitted during the final stages of the inspiral phase constitute one of the most important sources for the ground-based laser interferometric GW detectors like LIGO, VIRGO and the proposed space-based detector LISA. For the ground-based detectors, NS and/or stellar mass BH binaries are primary sources, while for LISA super-massive BH (SMBH) binaries are potential targets. Inspiralling compact binaries (ICB) are among the prime targets for interferometric detectors because using approximation schemes in general relativity (GR) like the post-Minkowskian (PM) and the post-Newtonian (PN) approximations one can compute the GW emitted by them with sufficient accuracy both for their detection and parameter estimation leading to GW astronomy. The extreme weakness of gravitational interactions implies that if a GW signal from an ICB is incident on a detector, it will be buried in the noisy detector output. Therefore, sophisticated data analysis techniques are required for detecting the signal in presence of the dominant noise and also estimating the parameters of the signal. From the pre-calculated theoretical waveforms called templates, one already knows the structure of the waveform from an ICB. The technique for detecting signals which are of known form in a noisy detector is matched filtering. This technique consists of cross-correlating the output of a noisy detector assumed to contain the signal of known form with a set of templates. It then finds an ‘optimal’ template that would produce, on average, the highest signal-to-noise ratio (SNR). The efficient performance of matched filtering as a data-analysis strategy for GW signals from ICB presupposes very accurate theoretical templates. Slight mismatches between the signal and the template will result in a loss of signal to noise ratio. Computing very accurate theoretical templates and including effects such as eccentricity are challenging tasks for the theoreticians. This thesis addresses some of the issues related to the waveform modelling of the ICB and their implications for GW data analysis. It is known theoretically that compact binaries reduce their eccentricity through the emission of GW. When GW signals from prototype ICB reach the GW detector bandwidth, their orbits are almost circular. Hence one usually models the binary orbit to be circular for computation of the search templates. The waveform from an ICB in a circular orbit is, at any given PN order of approximation, a linear combination of a finite number of harmonics of the orbital frequency. At the lowest order of approximation, called the Newtonian order, the waveform comprises a single harmonic at twice the orbital frequency. Inclusion of higher order PN corrections lead to the appearance of higher harmonics of the orbital frequency. Since the amplitudes of the higher harmonics contain higher powers of the PN expansion parameter, relative to the Newtonian order, they are referred to as amplitude corrections. The phase of each harmonic, determined by the orbital phase, is known upto 3.5PN order (nPN is the order of approximation equivalent to terms ~(v/c)2n beyond the Newtonian order, where v denotes the binary’s orbital velocity and c is the speed of light). Matched filtering is more sensitive to the phase of the signal rather than its amplitude, since the correlation builds up as long as the signal and the template remain in phase. Motivated by this fact, search templates so far have been a waveform model involving only the dominant harmonic (at twice the orbital frequency), although the phase evolution itself is included upto the maximum available PN order. Such waveforms, in which all amplitude corrections are neglected, but the phase is treated to the maximum available order, are called restricted waveforms (RWF) and these are generally used in the data-analysis of ground-based detectors and also simulated searches for the planned LISA. However, recent studies, in the case of ground-based interferometers, showed that going beyond the RWF approximation could improve the efficiency of detection as well as parameter estimation of the inspiral signal. After a brief overview of the properties of GW and their detection strategies in chapter 1, in chapters 2 and 3, we investigate the implications of going beyond the RWF, in the context of the planned space-based Laser Interferometric Space Antenna (LISA). The sensitivity of ground-based detectors is limited by seismic noise below 20Hz. On the other hand, the space-based LISA will be designed to be sensitive to GWs of frequency (10−4 _1)Hz. The most important source in this frequency band are supermassive BH (SMBH) binaries. There is strong observational evidence for the existence of SMBH with masses in the range of in most galactic nuclei. Mergers of such galaxies result in SMBH binaries whose evolution is governed by the emission of GW. Observation of the GW from SMBH binaries at high redshifts is one of the major science goals of LISA. These observations will allow us to probe the evolution of SMBHs and structure formation and provide an unique opportunity to test General Relativity (and its alternatives) in the strong field regime of the theory. Observing SMBH coalescences with high (100-1000) SNR is crucial for performing all the aforementioned tests. The LISA bandwidth (10−4_ 1)Hz determines the range of masses accessible to LISA because the inspiral signal would end when the system’s orbital frequency reaches the mass-dependent last stable orbit (LSO). In the test-mass approximation, the angular velocity ι at LSO is given by where M is the total mass of the binary. Search templates using the RWF, which contains only the dominant harmonic at twice the orbital frequency, cannot extract power in the signal beyond This further implies that the frequency range [0.1, 100] mHz corresponds to the range for the total mass of BH binaries that would be accessible to LISA. In chapter 2, we show that inclusion of higher harmonics will enhance the mass-range of LISA (for the same frequency range) and allow for the detection of SMBH binaries with total masses higher than The template employed in chapter 2 includes amplitude corrections upto 2.5PN order, while keeping the phase upto 3.5PN order. We call this template the full waveform (FWF). The FWF defined above contains higher harmonics of the orbital frequency, the highest of them being 7 times the orbital frequency. For a SMBH binary with total mass the dominant harmonic at LSO is less than the lower cut-off of the LISA bandwidth. Therefore, if one uses the RWF as a search template, this system is ‘invisible’ to LISA. However, the seventh harmonic can still enter the LISA bandwidth and produce a significant SNR and thus allow its detection. With the FWF, LISA can observe sources which are favoured by astronomical observations, but not observable with the RWF. More specifically, with the inclusion of all known harmonics LISA will be able to observe SMBH coalescences with total mass (and mass-ratio 0.1) for a low frequency cut-off of 10−4Hz (10−5Hz) with an SNR up to ~ 60 (~30) at a distance of 3 Gpc. The orbital motion of LISA around the Sun induces frequency, phase and amplitude modulations in the observed GW signal. These modulations carry information about both the source’s location and orientation. Determination of the angular coordinates of the source also allows determination of the luminosity distance of SMBH binaries. Therefore, SMBH binaries are often referred to as GW “standard sirens” (analogous to the electromagnetic “standard candles”). LISA would also be able to measure the “redshifted” masses of the component black holes with good accuracy for sources up to redshifts of a few. However, GW observations alone cannot provide any information about the redshift of the source. If the host galaxy or galaxy cluster is known one can disentangle the redshift from the masses by optical measurement of the redshift. This would not only allow one to extract the “physical” masses, but also provide an exciting possibility to study the luminosity distance-redshift relation providing a totally independent confirmation of the cosmological parameters. Further, this combined observation can be used to map the distribution of black hole masses as a function of redshift. Another outstanding issue in present day cosmology in which LISA can play a role is the dark energy and its physical origin. Probing the equation-of-state-ratio (w(z)) provides an important clue to the question of whether dark energy is truly a cosmological constant (i.e., w = -1). Assuming the Universe to be spatially flat, a combination of WMAP and Supernova Legacy Survey (SNLS) data yields significant constraints on Without including the spatial flatness as a prior, WMAP, large-scale structure and supernova data place a stringent constraint on the dark energy equation of state, For this to be possible, LISA should (a) measure the luminosity distance to the source with a good accuracy and (b) localize the coalescence event on the sky with good angular resolution so that the host galaxy/galaxy cluster can be uniquely identified. Based on analysis with the RWF, it is found that LISA’s angular resolution is not good enough to identify the source galaxy or galaxy cluster, and that other forms of identification would be needed. Secondly, weak lensing effects would corrupt the distance estimation to the same level as LISA’s systematic error. In chapter 3, we study the problem of parameter estimation in the context of LISA, but using the FWF. We investigate systematically the variation in parameter estimation with PN orders by critically examining the role of higher harmonics in the fast GW phasing and their interplay with the slow modulations induced due to LISA’s motion. More importantly, we explore the improvement in the estimation of the luminosity distance and the angular parameters due to the inclusion of higher harmonics in the waveform. We translate the error in the angular resolution to obtain the number of galaxies (or galaxy clusters) within the error box on the sky. We find that independent of the angular position of the source on the sky, higher harmonics improve LISA’s performance on both counts raised in earlier works based on the RWF. We show that the angular resolution enhances typically by a factor of ~2-500 (greater at higher masses) and the error on the estimation of the luminosity distance goes down by a factor of ~ 2-100 (again, larger at higher masses). For many possible sky positions and orientations of the source, the inaccuracy in our measurement of the dark energy would be at the level of a few percent, so that it would only be limited by weak lensing. We conclude that LISA could provide interesting constraints on cosmological parameters, especially the dark energy equation-of-state, and yet circumvent all the lower rungs of the cosmic distance ladder. Having emphasized the need to consider the FWF as a more powerful template, in chapter 4 we calculate a higher order term in the amplitude corrections of the waveform. In chapters 2 & 3, the FWF incorporated amplitude corrections upto 2.5PN order. In chapter 4 the waveform is calculated upto 3PN order. Recent progress in Numerical Relativity (NR) has resulted in computation of the late inspiral and subsequent merger and ringdown phases of the binary evolution (where PN theory does not hold good) by a full-fledged numerical integration of the Einstein field equations. A new field has emerged recently consisting of high-accuracy comparisons between the PN predictions and the numerically-generated waveforms. Such comparisons and matching to the PN results have proved currently to be very successful. They clearly show the need to include high PN corrections not only for the evolution of the binary’s orbital phase but also for the modulation of the gravitational amplitude. This leads to one more motivation for the work in this chapter: providing the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high PN prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. For the computation of waveforms from the inspiralling compact binaries one needs to solve the two-body problem in general relativity. The nonlinear structure of general relativity prevents one from obtaining a general solution to this problem. The two-body problem is tackled using the multipolar post-Minkowskian (MPM) wave generation formalism. The MPM formalism describes the radiation field of any isolated post-Newtonian source. The radiation field is first of all parametrized by means of two sets of radiative multipole moments. These moments are then related (by means of an algorithm for solving the non-linearities of the field equations) to the so-called canonical moments which constitute some useful intermediaries for describing the external field of the source. The canonical moments are then expressed in terms of the operational source moments obtained by matching to a PN source and are given by explicit integrals extending over the matter source and gravitational field. The extension of the waveform by half a PN order requires as inputs the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also require the 3PN extension of the source multipole moments in the case of compact binaries. The waveform in the far-zone consists of two types of terms, instantaneous and hereditary. The instantaneous terms are determined by the dynamical state of the binary at the retarded time. The hereditary terms, on the other hand, depend on the entire past history of the source. These terms originate from the nonlinear interactions between the various multipole moments and also from backscattering off the curved spacetime generated by the waves themselves. In this chapter, we compute the contributions of all the instantaneous and hereditary terms (which include tails, tails-of-tails and memory integrals) up to 3PN order. The end results of this chapter are given in terms of both the 3PN plus and cross polarizations and the separate spin-weighted spherical harmonic modes. Though most of the sources will be in circular orbits by the time the GWs emitted by the system enter the sensitivity band of the laser interferometers, astrophysical scenarios such as Kozai mechanism could produce binaries which have nonzero eccentricity. Studies have shown that filtering the signal from an eccentric binary with circular orbit templates could significantly degrade the SNR. For constructing a phasing formula for eccentric binaries one has to compute the energy and angular momentum fluxes carried away by the GWs and then compute how the orbital elements evolve with time under gravitational radiation reaction. The far-zone energy and angular momentum fluxes, like the waveform, contain both instantaneous and hereditary contributions. The complete 3PN energy flux and instantaneous terms in the 3PN angular momentum flux are already known. In chapter 5, the hereditary terms in the 3PN angular momentum flux from an ICB moving in quasi-elliptical orbits are computed. A semi-analytic method in the frequency domain is used to compute the hereditary contributions. At 3PN order, the quasi-Keplerian representation of elliptical orbits at 1PN order is required. To calculate the tail contributions we exploit the doubly periodic nature of the motion to average the 3PN fluxes over the binary’s orbit. The hereditary part of the angular momentum flux provided here has to be supplemented with the instantaneous part to obtain the final input needed for the construction of templates for binaries moving in elliptical orbits, a class of sources for both the space based detectors and the ground based ones. Using the hereditary contributions in the 3PN energy flux, we also compute the 3PN accurate hereditary contributions to the secular evolution of the orbital elements of the quasi-Keplerian orbit description.

Page generated in 0.0301 seconds