• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates

Dahmen, Wolfgang, Harbrecht, Helmut, Schneider, Reinhold 05 April 2006 (has links) (PDF)
In this paper matrix compression techniques in the context of wavelet Galerkin schemes for boundary integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that is proven to stay proportional to the number of unknowns. Key issues are the second compression, that reduces the near field complexity significantly, and an additional a-posteriori compression. The latter one is based on a general result concerning an optimal work balance, that applies, in particular, to the quadrature used to compute the compressed stiffness matrix with sufficient accuracy in linear time. The theoretical results are illustrated by a 3D example on a nontrivial domain.
2

Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates

Dahmen, Wolfgang, Harbrecht, Helmut, Schneider, Reinhold 05 April 2006 (has links)
In this paper matrix compression techniques in the context of wavelet Galerkin schemes for boundary integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that is proven to stay proportional to the number of unknowns. Key issues are the second compression, that reduces the near field complexity significantly, and an additional a-posteriori compression. The latter one is based on a general result concerning an optimal work balance, that applies, in particular, to the quadrature used to compute the compressed stiffness matrix with sufficient accuracy in linear time. The theoretical results are illustrated by a 3D example on a nontrivial domain.

Page generated in 0.1007 seconds