• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 374
  • 294
  • 137
  • 115
  • 22
  • 21
  • 14
  • 9
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1118
  • 338
  • 100
  • 98
  • 95
  • 83
  • 82
  • 71
  • 71
  • 70
  • 69
  • 68
  • 67
  • 63
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Kineziterapijos veiksmingumas koreguojant 8-10 metų vaikų netaisyklingą laikyseną / The effectiveness of physical therapy treating 8-10 year old children's faulty posture

Girdzijauskaitė, Rita 18 May 2005 (has links)
The aim of this study was to evaluate the effectiveness of physical exercises treating 8-10 year old children’s faulty posture. In order to realize the subjective state of health, physical activity of theese children, the questionnaire was presented for their parents to complete. The research was performed during the period the third of November to the third of April in a health and fitness center „Sveikieji Baltai“. Thirty 8-10 year old children became a part of this research. These children were tested twice – before applying the complex of physical exercises and after it – after 5 months. The strength of trunk muscles was measured in the course of these testings. 15 of these children had to perform the complex of physical exercises in a health and fitness center under control of physical therapist 3 times a week, every session took 45 minutes. Another 15 children had to perform the complex of physical exercises at home under control of their parents. Parents of these children were instructed about the technique of these exercises. Children who had to perform exercises at home had to perform them analogous to children who exercised in a health and fitness center (3 times a week, every session‘s duration – 45 minutes). Having made the analysis of received data, the research demonstrated that the strength of trunk muscles increased in both groups of children. But the strength of trunk muscles of children who exercised in a health and fitness center increased more than in a... [to full text]
112

Measurement properties of the sagittal craniocervical posture photogrammetry

Gadotti, Inae Caroline Unknown Date
No description available.
113

Measurement properties of the sagittal craniocervical posture photogrammetry

Gadotti, Inae Caroline 11 1900 (has links)
Commonly in clinical settings, the patients posture is visually evaluated by the clinician using anatomical landmark references. However, this measurement is subjective and not quantifiable. Photogrammetry to assess posture was thought to be a possible good clinical alternative to the other methods because it is non-invasive, quantifiable, and less expensive. However, more tests were needed to determine its validity. This study tested the reliability and the validity of five angles measuring craniocervical posture using photogrammetry. Radiographs and photographs of the craniocervical posture of 39 healthy-female subjects were taken in a standardized sagittal standing position. Markers were placed on the back of the subjects neck and ear. A second photograph and radiograph was taken 1 week later using 21 of the 39 subjects to test reliability. The angles were analyzed using Alcimage software. Intraclass-correlation coefficient and standard error of measurement was used to test the reliability. Concurrent validity was tested using Pearson correlation and regression analysis. Discriminant analysis was used to test the discriminant validity. Sensitivity/specificity and predicted values were also calculated. The results showed that photogrammetry ICC values were good to excellent when assessed by 2 raters (ICC=0.89-0.99). The posture of the subjects was reproducible when tested using radiographs (ICC=0.89-0.98). One rater was reliable in reattaching the markers (ICC=0.71-0.91) and precise in locating the reference spinous processes (87.8%). Craniovertebral angle (CVA) appeared to be valid in measuring the position of the head in relation to the cervical spine (r=0.84) and to be able discriminate subjects with aligned posture, slight forward head posture (SFHP), and forward head posture (FHP) assessed by 1 rater (84.6% correctly classified). Cervical inclination angle (CIA) appears to be valid in discriminating subjects with aligned and FHP (86% and 88% respectively) but moderate to predict the cervical spine inclination. The cervical lordosis angles were not able to discriminate postures and predict the cervical lordosis. CVA and CIA were able to detect postural differences through the sensitivity/specificity and predicted values analysis. This study supports the validation of CVA and CIA to assess craniocervical posture which may improve the ability of the clinician to detect and quantify craniocervical postural alterations. / Rehabilitation Science
114

The relationship between thoracic posture and the holding times of lower trapezius /

Chigwidden, Kathryn. Unknown Date (has links)
Thesis (MAppSci in Physiotherapy) -- University of South Australia, 1994
115

Cervical headache :

McDougall, Suzanne. Unknown Date (has links)
Thesis (MAppSc in Physiotherapy) -- University of South Australia, 1998
116

External loads and the neural control of posture

Chew, John Zong Zheng, Prince of Wales Medical Research Institute, Faculty of Medicine, UNSW January 2009 (has links)
This thesis investigates the processes of human postural control. How do we keep still? In any action, the force required changes with limb position. This force-position relationship is elastic stiffness. Holding a desired posture requires muscle activation that accounts for this load property. The studies here examine the physiological processes of postural control as elastic stiffness changes. Psychophysical studies show that thresholds for detecting differences in load stiffness are large relative to those normally encountered. To discriminate stiffness, subjects made consistent movements and judged the force required and detection thresholds followed rules for force perception. For the purposes of postural control, stiffness per se is not a variable of primary interest. The effects of load stiffness on postural stability were investigated using a pendulum that allowed independent control of load force and stiffness. Postural stability varied with load stiffness and this effect was independent of load force. Performance deteriorated as load stiffness became more negative. Load-dependent changes were at low frequencies only, suggesting neural processes operating at long latency, and perhaps ???volitional??? tracking, are the key to postural control. Imposed perturbations evoke patterns of muscle activation reflecting the state of the neural pathways of postural control. Stretch responses obtained while subjects held different loads show that the short-latency spinal reflex and the long-latency functional reflex in the active flexor muscle are unaffected by load stiffness. However, a stereotyped response observed after stretch-reflex latency varied systematically with load stiffness, as did reciprocal activation of the antagonist extensor muscle. The long-latency reflex appears to be a part of a coordinated reciprocal response of antagonist muscle pairs. Adapting to load properties involves modulating these later neural responses. A method was developed, based on ultrasound, to track changes in muscle and tendon length associated with small postural movements. The relationship between wrist angle and muscle and tendon length in the active muscle changed with load stiffness. Particularly with negative-stiffness loads, the wrist moves on the end of a compliant tendon without corresponding changes in muscle length. Thus, compensation of postural performance by neural modulation is limited by the properties of muscle and tendon.
117

External loads and the neural control of posture

Chew, John Zong Zheng, Prince of Wales Medical Research Institute, Faculty of Medicine, UNSW January 2009 (has links)
This thesis investigates the processes of human postural control. How do we keep still? In any action, the force required changes with limb position. This force-position relationship is elastic stiffness. Holding a desired posture requires muscle activation that accounts for this load property. The studies here examine the physiological processes of postural control as elastic stiffness changes. Psychophysical studies show that thresholds for detecting differences in load stiffness are large relative to those normally encountered. To discriminate stiffness, subjects made consistent movements and judged the force required and detection thresholds followed rules for force perception. For the purposes of postural control, stiffness per se is not a variable of primary interest. The effects of load stiffness on postural stability were investigated using a pendulum that allowed independent control of load force and stiffness. Postural stability varied with load stiffness and this effect was independent of load force. Performance deteriorated as load stiffness became more negative. Load-dependent changes were at low frequencies only, suggesting neural processes operating at long latency, and perhaps ???volitional??? tracking, are the key to postural control. Imposed perturbations evoke patterns of muscle activation reflecting the state of the neural pathways of postural control. Stretch responses obtained while subjects held different loads show that the short-latency spinal reflex and the long-latency functional reflex in the active flexor muscle are unaffected by load stiffness. However, a stereotyped response observed after stretch-reflex latency varied systematically with load stiffness, as did reciprocal activation of the antagonist extensor muscle. The long-latency reflex appears to be a part of a coordinated reciprocal response of antagonist muscle pairs. Adapting to load properties involves modulating these later neural responses. A method was developed, based on ultrasound, to track changes in muscle and tendon length associated with small postural movements. The relationship between wrist angle and muscle and tendon length in the active muscle changed with load stiffness. Particularly with negative-stiffness loads, the wrist moves on the end of a compliant tendon without corresponding changes in muscle length. Thus, compensation of postural performance by neural modulation is limited by the properties of muscle and tendon.
118

External loads and the neural control of posture

Chew, John Zong Zheng, Prince of Wales Medical Research Institute, Faculty of Medicine, UNSW January 2009 (has links)
This thesis investigates the processes of human postural control. How do we keep still? In any action, the force required changes with limb position. This force-position relationship is elastic stiffness. Holding a desired posture requires muscle activation that accounts for this load property. The studies here examine the physiological processes of postural control as elastic stiffness changes. Psychophysical studies show that thresholds for detecting differences in load stiffness are large relative to those normally encountered. To discriminate stiffness, subjects made consistent movements and judged the force required and detection thresholds followed rules for force perception. For the purposes of postural control, stiffness per se is not a variable of primary interest. The effects of load stiffness on postural stability were investigated using a pendulum that allowed independent control of load force and stiffness. Postural stability varied with load stiffness and this effect was independent of load force. Performance deteriorated as load stiffness became more negative. Load-dependent changes were at low frequencies only, suggesting neural processes operating at long latency, and perhaps ???volitional??? tracking, are the key to postural control. Imposed perturbations evoke patterns of muscle activation reflecting the state of the neural pathways of postural control. Stretch responses obtained while subjects held different loads show that the short-latency spinal reflex and the long-latency functional reflex in the active flexor muscle are unaffected by load stiffness. However, a stereotyped response observed after stretch-reflex latency varied systematically with load stiffness, as did reciprocal activation of the antagonist extensor muscle. The long-latency reflex appears to be a part of a coordinated reciprocal response of antagonist muscle pairs. Adapting to load properties involves modulating these later neural responses. A method was developed, based on ultrasound, to track changes in muscle and tendon length associated with small postural movements. The relationship between wrist angle and muscle and tendon length in the active muscle changed with load stiffness. Particularly with negative-stiffness loads, the wrist moves on the end of a compliant tendon without corresponding changes in muscle length. Thus, compensation of postural performance by neural modulation is limited by the properties of muscle and tendon.
119

Effects of healthy aging on balance : a quantitative analysis of clinical tests /

Jonsson, Erika, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.
120

Measuring the sitting posture of high school learners : a reliability and validity study /

Van Niekerk, Sjan-Mari. January 2007 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.

Page generated in 0.0774 seconds