• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical Investigations of Neurohypophysial Excitability and Amyloid Fibril Formation

Foley, Joseph Leo 01 January 2013 (has links)
This dissertation describes the work done on two distinct projects. In the first part I sought to unravel the mechanisms that underlie the activity-dependent modulation of response in the excitation-secretion coupling of the neurohypophysis. In the second part, I optically monitored and analyzed the secondary structure changes accompanying amyloid fibril formation along multiple pathways, under both denaturing and near-physiological conditions. Neuronal plasticity plays an important role in regulating various biological systems by modulating release of hormones or neurotransmitters. The changing response to the same stimulus, depending on the context and previous stimulation events, is also the basis of learning and all higher order brain functions. The mechanisms behind this modulation are widely varied, and are often poorly understood in specific tissues. In this work, we examined excitation-secretion coupling in the neurohypophysis, a tissue composed of densely packed axons that secretes the hormones arginine vasopressin and oxytocin. The release of hormones depends not only on the overall level of activity in the gland, but also upon the specifics of the temporal pattern of stimulation. By optically monitoring the electrical activity using voltage sensitive dyes, we were able to investigate this plasticity in the intact gland. Varying extracellular potassium concentration in the bath, increasing interstitial space via hypertonic saline, and retarding potassium reuptake with ouabain all showed that extracellular potassium accumulation drives the depression of excitability. This effect is hidden from glass micro-electrode recordings because of the inevitable damage sustained by the surrounding tissue. Furthermore, no calcium mediated release mechanism played any significant role in the depression. Numerical simulations confirmed the findings and give more insight to the details of the mechanism. Deposits of amyloid fibrils, long, unbranched polymeric protein aggregates, are the molecular hallmark for a variety of human diseases, including Alzheimer's disease, Parkinson's disease, and type II diabetes. While the amyloid fibrils all share a characteristic cross-beta sheet structure, the proteins that make up the aggregates have no unifying theme in either native structure or function. In this research, I characterized the structural reordering that accompanies this aggregation using Fourier transform infrared spectroscopy (FTIR). Hen egg white lysozyme forms fibrillar aggregates with two distinct morphologies, depending on the growth conditions. At acidic pH with low ionic concentrations, lysozyme forms the fibrils with standard amyloid morphology. These aggregates are long and stiff but with the cross sectional area of a single monomer. At higher salt concentrations, the aggregation follows another pathway, under which oligomers initially form and later assemble into protofibrils. The oligomeric protofibrils are thicker than the monomeric filaments, but are much more curvilinear. These fibrils are not universally recognized as amyloidogenic aggregates. Using FTIR, I showed that both this aggregates are indeed amyloid structures, but that they are structurally distinct. While it is generally accepted that partial unfolding of the protein is a prerequisite for amyloid fibril formation, we found that native protein can be the substrate for amyloid growth when seeded with preformed oligomeric or protofibrillar aggregates. These seeded fibrils grown under near-physiological conditions are structurally indistinguishable from those grown from partially unfolded protein under denaturing conditions. This incorporation and restructuring of native monomers is characteristic of prion-like assembly.
2

Theoretical Investigations of Communication in the Microcirculation: Conducted Responses, Myoendothelial Projections and Endothelium Derived Hyperpolarizing Factor

Nagaraja, Sridevi 07 November 2011 (has links)
The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca2+ transient generated a hyperpolarizing feedback of ~ 2-3mV. Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC Vm, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.

Page generated in 0.1159 seconds