• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 480
  • 243
  • 95
  • 31
  • 18
  • 15
  • 14
  • 12
  • 12
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1172
  • 521
  • 305
  • 297
  • 225
  • 211
  • 197
  • 168
  • 144
  • 137
  • 131
  • 127
  • 111
  • 106
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Maturation of the transient chromatic (L-M) visual evoked potential: insights from linear and nonlinear analysis.

Boon, Mei Ying, Optometry & Vision Science, Faculty of Science, UNSW January 2007 (has links)
Introduction: Psychophysical and electrophysiological techniques have shown that chromatic contrast sensitivity improves between infancy and adolescence. In adults, electrophysiological and psychophysical methods usually agree. However, in infants electrophysiological techniques may underestimate ability to see chromatic contrast (Suttle et al., 2002). It is not known if the discrepancy between electrophysiological and psychophysical methods continues during childhood nor whether the chromatic VEP can be used as an indicator of colour perception in children. Purpose: To investigate the transient L-M chromatic visual evoked potential and its ability to indicate perception (psychophysical thresholds) of chromatic stimuli in children and adults. In particular, to determine whether a discrepancy between VEP and psychophysical L-M thresholds exists during childhood and if so, to gain some understanding about the nature of the discrepancy. Methods: Transient chromatic VEPs were recorded in children (aged 4.5-13 years) and adults (aged 20-40 years). VEP thresholds were compared with psychophysical thresholds (within-subjects comparison). Because the VEPs of the children were less intra-individually repeatable in morphology than those of the adults, post-hoc objective analysis of the VEPs, linear (Fourier) and nonlinear dynamical (Grassberger and Procaccia's (1983) correlation dimension) analyses, was conducted. Results: VEP and psychophysical estimates of chromatic contrast thresholds agreed using a variety of methods in the adults. In the children, however, the objective methods of assessment (extrapolation from Fourier-derived amplitudes and the correlation dimension) were more accurate than the methods that employed subjective evaluations of VEP morphology. Conclusion: The L-M transient chromatic VEPs of both children (aged 4.5-13 years) and adults appear to contain chromatic information, even in the absence of repeatable VEP morphology and should therefore be able to indicate chromatic perception (psychophysical thresholds). However, the chromatic information may be present as a nonlinear dynamical signal, which may require objective methods (Fourier analysis, the correlation dimension) to reveal the chromatic signal. The greater intra-individual variability of VEP morphology in children compared to adults may reflect poorer precision when switching between cortical states in children's brains. Alternatively, interactions between the immature visual system of the children and their general EEG may occur. Children's VEPs should therefore be interpreted differently to adult VEPs.
182

Achromatic and chromatic VEPs in adults with down syndrome

Lloyd, Robyn, School of Optometry & Visual Science, UNSW January 2005 (has links)
Previous studies have found that spatial processing in children and adults with Down syndrome is different in comparison to the normal population. Some previous studies have also found that there is a high prevalence of colour vision deficiencies in people with Down syndrome. The aim of the present study was to use an objective test, the transient visual evoked potential (VEP), to assess achromatic and chromatic visual processing in adults with Down syndrome. Achromatic VEPs were recorded in response to black-white stimuli presented in patternreversal mode. Chromatic VEPs were recorded in response to two types of colour pattern, presented in pattern onset-offset mode. The two colour types were intended to preferentially stimulate the two principal chromatic pathways of the visual system, the ???redgreen??? and ???blue-yellow??? colour-opponent pathways. These stimuli are here termed the ???LM??? and ???S-(L+M) stimuli, respectively, reflecting the cone types that input to the pathways they are intended to stimulate. Each subject also completed two subjective colour vision tests, the Colour Vision Test Made Easy (CVTME) and the City University Colour Vision Test (CUT). Morphology of the achromatic and chromatic VEPs was found to differ between the group with Down syndrome and an age-matched control group. The latency of the P100 component of the achromatic VEP was found to be significantly later in the group with Down syndrome compared to the control group (the N75 latency was earlier in the group with Down syndrome, but not significantly so). The group-averaged peak-to-peak amplitude of the achromatic VEP was significantly lower in the group with Down syndrome compared to the control group. The major positive component of the VEP in response to the L-M stimulus was of significantly longer latency compared to that of the control group. The major negative component and the peak-to-peak amplitude of this response were not significantly different between the groups. For the response to S-(L+M) stimuli, the latency of the major negativity was significantly earlier in the group with Down syndrome and the major positivity was later, but not significantly so. Amplitude of this response was significantly higher in adults with Down syndrome compared to the control group. Most subjects in both groups passed both the CVTME and CUT. Our findings indicate that chromatic VEPs are abnormal in Down syndrome, and this may reflect abnormal processing of chromatic stimuli in this population. Alternatively, these abnormalities may arise due to abnormal cortical morphology, which may occur with normal or abnormal processing of chromatic signals. These findings further indicate that abnormality of chromatic VEPs may be expected in Down syndrome, and is not necessarily indicative of pathology or other abnormal function that is unrelated to the syndrome.
183

Negation in context electrophysiological and behavioral investigations of negation effects in discourse processing /

Staab, Jenny. January 2007 (has links)
Thesis (Ph. D.)--University of California, San Diego and San Diego State University, 2007. / Title from first page of PDF file (viewed January 9, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 258-271).
184

Computerized algorithms to score P1 wave characteristics in the cortical auditory evoked potentials of children with cochlear implants

Wood, Jim, January 2007 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2007. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
185

The contributions of phonology and orthography to skilled reading : an electrophysiological investigation of phonological priming effects /

Misra, Maya. January 1900 (has links)
Thesis (Ph.D.)--Tufts University, 2004. / Adviser: Phillip J. Holcomb. Submitted to the Dept. of Psychology. Includes bibliographical references (leaves 211-216). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
186

Changes in chromatic pattern-onset VEP with full-body inversion

Highsmith, Jennifer Rea. January 2007 (has links)
Thesis (M.A.)--University of Nevada, Reno, 2007. / "August, 2007." Includes bibliographical references (leaves 10-11). Online version available on the World Wide Web.
187

Classifying responses to imagined movements in scalp and intracranial EEG for a brain computer interface

Zelmann, Rina. January 1900 (has links)
Thesis (M.Eng.). / Written for the Dept. of Biomedical Engineering. Title from title page of PDF (viewed 2008/07/29). Includes bibliographical references.
188

The electrophysiological difference between nouns and verbs /

Corey, Vicka Rael. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [97]-103).
189

Quantum transport and control of atomic motion with light

Gutiérrez-Medina, Braulio, Raizen, Mark George, January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Mark G. Raizen. Vita. Includes bibliographical references. Also available from UMI.
190

Brain electrical correlates of emotion and attention in lexical semantic processing /

Frishkoff, Gwen Alexandra, January 2004 (has links)
Thesis (Ph. D.)--University of Oregon, 2004. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 432-460). Also available for download via the World Wide Web; free to University of Oregon users.

Page generated in 0.077 seconds