Spelling suggestions: "subject:"potentiel equivalents"" "subject:"potentiel équivalent""
1 |
Supersymmetric transformations and the inverse problem in quantum mechanicsSparenberg, Jean-Marc 28 January 1999 (has links)
<p align="justify">Les transformations de supersymétrie (ou de Darboux) sont appliquées à l'étude du problème inverse, c'est à dire à la construction d'un potentiel d'interaction à partir de données de collisions, en mécanique quantique. En effet, ces transformations permettent de construire de nouveaux potentiels à partir d'un potentiel donné. Leur formalisme est étudié en détail, ainsi que celui correspondant à l'itération de deux telles transformations (paires de transformations).</p>
<p align="justify">La présence d'états liés rend le problème inverse ambigu : plusieurs potentiels ayant des spectres liés différents peuvent avoir les mêmes propriétés pour la description des collisions; de tels potentiels sont dits équivalents en phase. Une décomposition originale du problème inverse est proposée pour gérer efficacement cette ambiguïté : dans un premier temps, un potentiel est construit à partir des données de collision (ce qui constitue le problème inverse proprement dit); dans un second temps, tous les potentiels équivalents en phase au potentiel ainsi obtenu sont construits. Avant ce travail, il était connu que ces deux aspects du problème inverse pouvaient être traités à l'aide de paires de transformations de supersymétrie.</p>
<p align="justify">En ce qui concerne la construction de potentiels équivalents, nous étendons les méthodes existantes à des catégories de potentiels très utilisées en physique nucléaire, à savoir les potentiels optiques (ou complexes), les potentiels en voies couplées et les potentiels dépendant linéairement de l'énergie. En utilisant une paire de transformations permettant d'enlever un état lié, nous comparons les propriétés physiques des potentiels nucléaires profonds (c'est à dire possédant des états liés interdits par le principe de Pauli) et peu profonds. Des calculs dans des modèles à trois corps du noyau à halo d'6He et de la collision 16O+17O à basse énergie n'ont pas révélé d'importantes différences entre ces familles de potentiels. D'autres types de transformations permettent d'ajouter des états liés à énergie et normalisation arbitraires. Cependant, dans le cas à plusieurs voies, leur utilisation est compliquée par la possibilité d'avoir des états liés dégénérés et non dégénérés. Une étude préliminaire à deux voies montre que ces deux types d'états peuvent être traités par supersymétrie.</p>
<p align="justify">En ce qui concerne le problème inverse proprement dit, nous montrons que l'utilisation de transformations simples (plutôt que de paires) permet une meilleure compréhension des méthodes existantes, tant pour l'inversion à moment cinétique orbital fixe que pour l'inversion à énergie fixe. De plus, l'utilisation de transformations simples mène dans certains cas à de nouvelles catégories de potentiels. Ainsi, nous construisons un nouveau potentiel d'interaction nucléon nucléon pour l'onde 1S; ce potentiel possède une singularité en r 2 à l'origine. La possibilité de construire des potentiels profonds par inversion est brièvement discutée. Pour les voies couplées, une étude bibliographique révèle certaines propriétés contradictoires des méthodes existantes, mais une analyse complète reste à faire.</p>
|
2 |
Supersymmetric transformations and the inverse problem in quantum mechanicsSparenberg, Jean-Marc 28 January 1999 (has links)
<p align="justify">Les transformations de supersymétrie (ou de Darboux) sont appliquées à l'étude du problème inverse, c'est à dire à la construction d'un potentiel d'interaction à partir de données de collisions, en mécanique quantique. En effet, ces transformations permettent de construire de nouveaux potentiels à partir d'un potentiel donné. Leur formalisme est étudié en détail, ainsi que celui correspondant à l'itération de deux telles transformations (paires de transformations).</p><p><p align="justify">La présence d'états liés rend le problème inverse ambigu :plusieurs potentiels ayant des spectres liés différents peuvent avoir les mêmes propriétés pour la description des collisions; de tels potentiels sont dits équivalents en phase. Une décomposition originale du problème inverse est proposée pour gérer efficacement cette ambiguïté :dans un premier temps, un potentiel est construit à partir des données de collision (ce qui constitue le problème inverse proprement dit); dans un second temps, tous les potentiels équivalents en phase au potentiel ainsi obtenu sont construits. Avant ce travail, il était connu que ces deux aspects du problème inverse pouvaient être traités à l'aide de paires de transformations de supersymétrie.</p><p><p align="justify">En ce qui concerne la construction de potentiels équivalents, nous étendons les méthodes existantes à des catégories de potentiels très utilisées en physique nucléaire, à savoir les potentiels optiques (ou complexes), les potentiels en voies couplées et les potentiels dépendant linéairement de l'énergie. En utilisant une paire de transformations permettant d'enlever un état lié, nous comparons les propriétés physiques des potentiels nucléaires profonds (c'est à dire possédant des états liés interdits par le principe de Pauli) et peu profonds. Des calculs dans des modèles à trois corps du noyau à halo d'6He et de la collision 16O+17O à basse énergie n'ont pas révélé d'importantes différences entre ces familles de potentiels. D'autres types de transformations permettent d'ajouter des états liés à énergie et normalisation arbitraires. Cependant, dans le cas à plusieurs voies, leur utilisation est compliquée par la possibilité d'avoir des états liés dégénérés et non dégénérés. Une étude préliminaire à deux voies montre que ces deux types d'états peuvent être traités par supersymétrie.</p><p><p align="justify">En ce qui concerne le problème inverse proprement dit, nous montrons que l'utilisation de transformations simples (plutôt que de paires) permet une meilleure compréhension des méthodes existantes, tant pour l'inversion à moment cinétique orbital fixe que pour l'inversion à énergie fixe. De plus, l'utilisation de transformations simples mène dans certains cas à de nouvelles catégories de potentiels. Ainsi, nous construisons un nouveau potentiel d'interaction nucléon nucléon pour l'onde 1S; ce potentiel possède une singularité en r 2 à l'origine. La possibilité de construire des potentiels profonds par inversion est brièvement discutée. Pour les voies couplées, une étude bibliographique révèle certaines propriétés contradictoires des méthodes existantes, mais une analyse complète reste à faire.</p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1033 seconds