• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Potentiation Effects of Half-Squats Performed in a Ballistic or Nonballistic Manner

Suchomel, Timothy J., Sato, Kimitake, DeWeese, Brad H., Ebben, William P., Stone, Michael H. 01 June 2016 (has links)
This study examined and compared the acute effects of ballistic and nonballistic concentric-only half-squats (COHSs) on squat jump performance. Fifteen resistance-trained men performed a squat jump 2 minutes after a control protocol or 2 COHSs at 90% of their 1 repetition maximum (1RM) COHS performed in a ballistic or nonballistic manner. Jump height (JH), peak power (PP), and allometrically scaled peak power (PPa) were compared using three 3 × 2 repeated-measures analyses of variance. Statistically significant condition × time interaction effects existed for JH (p = 0.037), PP (p = 0.041), and PPa (p = 0.031). Post hoc analysis revealed that the ballistic condition produced statistically greater JH (p = 0.017 and p = 0.036), PP (p = 0.031 and p = 0.026), and PPa (p = 0.024 and p = 0.023) than the control and nonballistic conditions, respectively. Small effect sizes for JH, PP, and PPa existed during the ballistic condition (d = 0.28–0.44), whereas trivial effect sizes existed during the control (d = 0.0–0.18) and nonballistic (d = 0.0–0.17) conditions. Large statistically significant relationships existed between the JH potentiation response and the subject's relative back squat 1RM (r = 0.520; p = 0.047) and relative COHS 1RM (r = 0.569; p = 0.027) during the ballistic condition. In addition, large statistically significant relationship existed between JH potentiation response and the subject's relative back squat strength (r = 0.633; p = 0.011), whereas the moderate relationship with the subject's relative COHS strength trended toward significance (r = 0.483; p = 0.068). Ballistic COHS produced superior potentiation effects compared with COHS performed in a nonballistic manner. Relative strength may contribute to the elicited potentiation response after ballistic and nonballistic COHS.
2

Potentiation Following Ballistic and Nonballistic Complexes: The Effect of Strength Level

Suchomel, Timothy J., Sato, Kimitake, DeWeese, Brad H., Ebben, William P., Stone, Michael H. 01 July 2016 (has links)
The purpose of this study was to compare the temporal profile of strong and weak subjects during ballistic and nonballistic potentiation complexes. Eight strong (relative back squat = 2.1 ± 0.1 times body mass) and 8 weak (relative back squat = 1.6 ± 0.2 times body mass) males performed squat jumps immediately and every minute up to 10 minutes following potentiation complexes that included ballistic or nonballistic concentric-only half-squat (COHS) performed at 90% of their 1 repetition maximum COHS. Jump height (JH) and allometrically scaled peak power (PPa) were compared using a series of 2 × 12 repeated measures analyses of variance. No statistically significant strength level main effects for JH (p = 0.442) or PPa (p = 0.078) existed during the ballistic condition. In contrast, statistically significant main effects for time existed for both JH (p = 0.014) and PPa (p < 0.001); however, no statistically significant pairwise comparisons were present (p > 0.05). Statistically significant strength level main effects existed for PPa (p = 0.039) but not for JH (p = 0.137) during the nonballistic condition. Post hoc analysis revealed that the strong subjects produced statistically greater PPa than the weaker subjects (p = 0.039). Statistically significant time main effects existed for time existed for PPa (p = 0.015), but not for JH (p = 0.178). No statistically significant strength level × time interaction effects for JH (p = 0.319) or PPa (p = 0.203) were present for the ballistic or nonballistic conditions. Practical significance indicated by effect sizes and the relationships between maximum potentiation and relative strength suggest that stronger subjects potentiate earlier and to a greater extent than weaker subjects during ballistic and nonballistic potentiation complexes.

Page generated in 0.1016 seconds