• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of TiO2 as a Pt-Catalyst Support in a Direct Ethanol Fuel Cell

Gordon, Ashley Rebecca 02 April 2012 (has links)
Direct ethanol fuel cells are of interest due to the high energy density, ease of distribution and handling, and low toxicity of ethanol. Difficulties lie in finding a catalyst that can completely oxidize ethanol and resist poisoning by intermediate reaction species. Degradation of the catalyst layer over time is also an issue that needs to be addressed. In this work, niobium doped-titanium dioxide (Nb-TiO2) is investigated as a platinum (Pt) support due to its increased resistance to corrosion compared to the common catalyst support, carbon. It has also been seen in the literature that TiO2 is able to adsorb OH and assist in freeing Pt sites by further oxidizing COad to CO2 and thereby increasing the catalytic activity of catalysts toward ethanol oxidation. The TiO2 support is mixed with carbon, forming Nb-TiO2-C, in order to increase the conductivity throughout the support. The electrochemical activity and direct ethanol fuel cell (DEFC) performance of this novel catalyst is investigated and compared to that of two common catalysts, carbon supported Pt (Pt/C) and carbon supported platinum-tin (PtSn/C). While the conductivity of the Pt/Nb-TiO2-C electrodes was low compared to that of the carbon supported electrodes, the overall catalytic activity and performance of the TiO2 supported catalyst was comparable to that of the Pt/C catalyst based on the electrochemically active surface area. / Master of Science

Page generated in 0.1242 seconds