• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Derivation and Analysis of Behavioral Models to Predict Power System Dynamics

Chengyi Xu (9161333) 28 July 2020 (has links)
In this research, a focus is on the development of simplified models to represent the behavior of electric machinery within the time-domain models of power systems. Toward this goal, a generator model is considered in which the states include the machine’s active and reactive power. In the case of the induction machine, rotor slip is utilized as a state and the steady-state equivalent circuit of the machine is used to calculate active and reactive power. The power network model is then configured to accept the generator and induction machine active and reactive power as inputs and provide machine terminal voltage amplitude and angle as outputs. The potential offered by these models is that the number of dynamic states is greatly reduced compared to traditional machine models. This can lead to increased simulation speed, which has potential benefits in model-based control. A potential disadvantage is that the relationship between the reactive power and terminal voltage requires the solution of nonlinear equations, which can lead to challenges when attempting to predict system dynamics in real-time optimal control. In addition, the accuracy of the generator model is greatly reduced with variations in rotor speed. Evaluation of the models is performed by comparing their predictions to those of traditional machine models in which stator dynamics are included and neglected.

Page generated in 0.1291 seconds