• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 10
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A robust wide area measurement based controller for networks with embedded HVDC links

Agnihotri, Prashant 12 August 2016 (has links)
The advent of Wide-Area measurement Systems has spurred interest in the use of non-local feedback signals for power swing damping control. Although damping can be improved through generator excitation systems, dc links and other grid connected power electronic converters, the full potential of wide-area measurements can be realized by coordinating the strategies used for multiple controllable devices in a grid. These strategies also need to be robust to partial or complete loss of communication, changes in operating points, topology and equipment outages, improve damping of all the controllable swing modes, and have adequate stability margins to avoid destabilization of untargeted modes. This thesis investigates a control strategy for multi-infeed and multi-terminal (also referred to as multiple embedded dc links in this thesis) dc links using local frequency difference signals as well as the frequency difference signals obtained from other dc links. This strategy combines the advantages of the local frequency difference signal with the additional degrees of freedom provided by the use of non-local frequency difference signals, to achieve targeted and enhanced swing mode damping for the poorly damped modes. Since the strategy uses only a limited set of non-local signals, the signals may be directly communicated to the dc links without having to be centrally collated with other system-wide measurements. The key aspect of the proposed strategy is the use of a symmetric positive definite (spd) gain matrix. This results in enhanced damping for all controllable swing modes. Furthermore, loss of communication between the dc links does not destroy the symmetric positive definiteness and the gain elements can be tuned to selectively enhance damping of poorly damped modes. Eigenvalue sensitivity analysis and case studies on a 3 machine 9 bus and 16 machine 68 bus system with multiple HVDC links are presented to demonstrate the key attributes and the effectiveness of this strategy. / October 2016
2

Development Of Current Injection Based Three Phase Unbalanced Continuation Power Flow For Distribution System

Toppo, Shilpa 10 December 2010 (has links)
Voltage stability studies (VSS) of the electric network is a crucial factor to make the system operate in stable region and to prevent power blackouts. There are several commercial tools available for VSS of electric transmission systems (TS) but not many for distribution systems (DS). With increasing penetration of distributed renewable generations and meshed network within DS, shipboard power system (SPS) and microgrid, these VSS tools need to be extended for DS. Due to inherent characteristic like high R/X ratio, three phase and unbalanced operation, DS or SPS requires different mathematical approach than TS. Unbalanced three phase power flow and continuation power flow tools were developed using current injection and corrector predictor methods in this work for VSS. Maximum loading point for given DS or SPS can be computed using developed tools to guide required preventive and corrective actions. Developed tool was tested and validated for several different test cases.
3

Dynamic Reactive Power Control of Isolated Power Systems

Falahi, Milad 14 March 2013 (has links)
This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally or due to a fault. Isolated power systems experience fast transients due to lack of an infinite bus capable of dictating the voltage and frequency reference. This dissertation only focuses on reactive control of islanded MicroGrids and AC/DC shipboard power systems. The problem is tackled using a Model Predictive Control (MPC) method, which uses a simplified model of the system to predict the voltage behavior of the system in future. The MPC method minimizes the voltage deviation of the predicted bus voltage; therefore, it is inherently robust and stable. In other words, this method can easily predict the behavior of the system and take necessary control actions to avoid instability. Further, this method is capable of reaching a smooth voltage profile and rejecting possible disturbances in the system. The studied MicroGrids in this dissertation integrate intermittent distributed energy resources such as wind and solar generators. These non-dispatchable sources add to the uncertainty of the system and make voltage and reactive control more challenging. The model predictive controller uses the capability of these sources and coordinates them dynamically to achieve the voltage goals of the controller. The MPC controller is implemented online in a closed control loop, which means it is self-correcting with the feedback it receives from the system.
4

A Novel Approach for Tuning of Power System Stabilizer Using Genetic Algorithm

Singh, Ravindra 07 1900 (has links)
The problem of dynamic stability of power system has challenged power system engineers since over three decades now. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system, which exhibits an oscillatory behaviour around the equilibrium state, following any disturbance, such as sudden change in loads, change in transmission line parameters, fluctuations in the output of turbine and faults etc. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of low frequency oscillations. The oscillations, which are typically in the frequency range of 0.2 to 3.0 Hz, might be excited by the disturbances in the system or, in some cases, might even build up spontaneously. These oscillations limit the power transmission capability of a network and, sometimes, even cause a loss of synchronism and an eventual breakdown of the entire system. The application of Power System Stabilizer (PSS) can help in damping out these oscillations and improve the system stability. The traditional and till date the most popular solution to this problem is application of conventional power system stabilizer (CPSS). However, continual changes in the operating condition and network parameters result in corresponding change in system dynamics. This constantly changing nature of power system makes the design of CPSS a difficult task. Adaptive control methods have been applied to overcome this problem with some degree of success. However, the complications involved in implementing such controllers have restricted their practical usage. In recent years there has been a growing interest in robust stabilization and disturbance attenuation problem. H∞ control theory provides a powerful tool to deal with robust stabilization and disturbance attenuation problem. However the standard H∞ control theory does not guarantee robust performance under the presence of all the uncertainties in the power plants. This thesis provides a method for designing fixed parameter controller for system to ensure robustness under model uncertainties. Minimum performance required of PSS is decided a priori and achieved over the entire range of operating conditions. A new method has been proposed for tuning the parameters of a fixed gain power system stabilizer. The stabilizer places the troublesome system modes in an acceptable region in the complex plane and guarantees a robust performance over a wide range of operating conditions. Robust D-stability is taken as primary specification for design. Conventional lead/lag PSS structure is retained but its parameters are re-tuned using genetic algorithm (GA) to obtain enhanced performance. The advantage of GA technique for tuning the PSS parameters is that it is independent of the complexity of the performance index considered. It suffices to specify an appropriate objective function and to place finite bounds on the optimized parameters. The efficacy of the proposed method has been tested on single machine as well as multimachine systems. The proposed method of tuning the PSS is an attractive alternative to conventional fixed gain stabilizer design as it retains the simplicity of the conventional PSS and still guarantees a robust acceptable performance over a wide range of operating and system condition. The method suggested in this thesis can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants.
5

Power System Dynamics Enhancement Through Phase Unbalanced and Adaptive Control Schemes in Series FACTS devices

2012 April 1900 (has links)
This thesis presents novel series compensation schemes and adaptive control techniques to enhance power system dynamics through damping Subsynchronous Resonance (SSR) and low-frequency power oscillations: local and inter-area oscillations. Series capacitive compensation of transmission lines is used to improve power transfer capability of the transmission line and is economical compared to the addition of new lines. However, one of the impeding factors for the increased utilization of series capacitive compensation is the potential risk of SSR, where electrical energy is exchanged with turbine-generator shaft systems in a growing manner which can result in shaft damage. Furthermore, the fixed capacitor does not provide controllable reactance and does not aid in the low-frequency oscillations damping. The Flexible AC Transmission System (FACTS) controllers have the flexibility of controlling both real and reactive power which could provide an excellent capability for improving power system dynamics. Several studies have investigated the potential of using this capability in mitigating the low-frequency (electromechanical) as well as the subsynchronous resonance (SSR) oscillations. However, the practical implementations of FACTS devices are very limited due to their high cost. To address this issue, this thesis proposes a new series capacitive compensation concept capable of enhancing power system dynamics. The idea behind the concept is a series capacitive compensation which provides balanced compensation at the power frequency while it provides phase unbalance at other frequencies of oscillations. The compensation scheme is a combination of a single-phase Thyristor Controlled Series Capacitor (TCSC) or Static Synchronous Series Compensator (SSSC) and a fixed series capacitors in series in one phase of the compensated transmission line and fixed capacitors on the other two phases. The proposed scheme is economical compared to a full three-phase FACTS counterpart and improves reliability of the device by reducing number of switching components. The phase unbalance during transients reduces the coupling strength between the mechanical and the electrical system at asynchronous oscillations, thus suppressing the build-up of torsional stresses on the generator shaft systems. The SSR oscillations damping capability of the schemes is validated through detailed time-domain electromagnetic transient simulation studies on the IEEE first and second benchmark models. Furthermore, as the proposed schemes provide controllable reactance through TCSC or SSSC, the supplementary controllers can be implemented to damp low-frequency power oscillations as well. The low-frequency damping capability of the schemes is validated through detail time-domain electromagnetic transient simulation studies on two machines systems connected to a very large system and a three-area, six-machine power system. The simulation studies are carried out using commercially available electromagnetic transient simulation tools (EMTP-RV and PSCAD/EMTDC). An adaptive controller consisting of a robust on-line identifier, namely a robust Recursive Least Square (RLS), and a Pole-Shift (PS) controller is also proposed to provide optimal damping over a wide range of power system operations. The proposed identifier penalizes large estimated errors and smooth-out the change in parameters during large power system disturbances. The PS control is ideal for its robustness and stability conditions. The combination results in a computationally efficient estimator and a controller suitable for optimal control over wider range of operations of a non-linear system such as power system. The most important aspect of the controller is that it can be designed with an approximate linearized model of the complete power system, and does not need to be re-tuned after it is commissioned. The damping capability of such controller is demonstrated through detail studies on a three-area test system and on an IEEE 12-bus test system. Finally, the adaptive control algorithm is developed on a Digital Signal Processing Board, and the performance is experimentally tested using hardware-in-the-loop studies. For this purpose, a Real Time Digital Simulator (RTDS) is used, which is capable of simulating power system in real-time at 50 µs simulation time step. The RTDS facilitates the performance evaluation of a controller just like testing on a real power system. The experimental results match closely with the simulation results; which demonstrated the practical applicability of the adaptive controller in power systems. The proposed controller is computationally efficient and simple to implement in DSP hardware.
6

Weakest Bus Identification Based on Modal Analysis and Singular Value Decomposition Techniques

Jalboub, Mohamed K., Rajamani, Haile S., Abd-Alhameed, Raed, Ihbal, Abdel-Baset M.I. 12 February 2010 (has links)
Yes / Voltage instability problems in power system is an important issue that should be taken into consideration during the planning and operation stages of modern power system networks. The system operators always need to know when and where the voltage stability problem can occur in order to apply suitable action to avoid unexpected results. In this paper, a study has been conducted to identify the weakest bus in the power system based on multi-variable control, modal analysis, and Singular Value Decomposition (SVD) techniques for both static and dynamic voltage stability analysis. A typical IEEE 3-machine, 9-bus test power system is used to validate these techniques, for which the test results are presented and discussed.
7

Derivation and Analysis of Behavioral Models to Predict Power System Dynamics

Chengyi Xu (9161333) 28 July 2020 (has links)
In this research, a focus is on the development of simplified models to represent the behavior of electric machinery within the time-domain models of power systems. Toward this goal, a generator model is considered in which the states include the machine’s active and reactive power. In the case of the induction machine, rotor slip is utilized as a state and the steady-state equivalent circuit of the machine is used to calculate active and reactive power. The power network model is then configured to accept the generator and induction machine active and reactive power as inputs and provide machine terminal voltage amplitude and angle as outputs. The potential offered by these models is that the number of dynamic states is greatly reduced compared to traditional machine models. This can lead to increased simulation speed, which has potential benefits in model-based control. A potential disadvantage is that the relationship between the reactive power and terminal voltage requires the solution of nonlinear equations, which can lead to challenges when attempting to predict system dynamics in real-time optimal control. In addition, the accuracy of the generator model is greatly reduced with variations in rotor speed. Evaluation of the models is performed by comparing their predictions to those of traditional machine models in which stator dynamics are included and neglected.
8

Propagation of Electromechanical Disturbances across Large Interconnected Power Systems and Extraction of Associated Modal Content from Measurement Data

Bank, Jason Noah 14 January 2010 (has links)
Changes in power system operating conditions cause dynamic changes in angle and frequency. These disturbances propagate throughout the system area with finite speed. This propagation takes the form of a traveling wave whose arrival time at a particular point in the system can be observed using a wide-area measurement system (WAMS). Observations of these waves both through simulation and measurement data have demonstrated several factors that influence the speed at which a disturbance propagates through a system. Results of this testing are presented which demonstrate dependence on generator inertia, damping and line impedance. Considering a power system as an area with and uneven distribution of these parameters it is observed that a disturbance will propagate throughout a system at different rates in differing directions. This knowledge has applications in locating the originating point of a system disturbance, understanding the overall dynamic response of a power system, and determining the dependencies between various parts of that system. A simplified power system simulator is developed using the swing equation and system power flow equations. This simplified modeling technique captures the phenomenon of traveling electromechanical waves and demonstrates the same dependencies as data derived from measurements and commercial power system simulation packages. The ultimate goal of this research is develop a methodology to approximate a real system with this simplified wave propagation model. In this architecture each measurement point would represent a pseudo-bus in the model. This procedure effectively lumps areas of the system into one equivalent bus with appropriately sized generators and loads. With the architecture of this reduced network determined its parameters maybe estimated so as to provide a best fit to the measurement data. Doing this effectively derives a data-driven equivalent system model. With an appropriate equivalent model for a given system determined, incoming measurement data can be processed in real time to provide an indication of the system operating point. Additionally as the system state is read in through measurement data future measurements values along the same trajectory can be estimated. These estimates of future system values can provide information for advanced control and protection schemes. Finally a procedure for the identification and extraction of inter-area oscillations is developed. The dominant oscillatory frequency is identified from an event region then fit across the surrounding dataset. For each segment of this data set values of amplitude, phase and damping are derived for each measurement vector. Doing this builds up a picture of how the oscillation evolves over time and responds to system conditions. These results are presented in a graphical format as a movie tracking the modal phasors over time. Examples derived from real world measurement data are presented. / Ph. D.
9

Genetic Algorithm Based Damage Control For Shipboard Power Systems

Amba, Tushar 2009 May 1900 (has links)
The work presented in this thesis was concerned with the implementation of a damage control method for U.S. Navy shipboard power systems (SPS). In recent years, the Navy has been seeking an automated damage control and power system management approach for future reconfigurable shipboard power systems. The methodology should be capable of representing the dynamic performance (differential algebraic description), the steady state performance (algebraic description), and the system reconfiguration routines (discrete events) in one comprehensive tool. The damage control approach should also be able to improve survivability, reliability, and security, as well as reduce manning through the automation of the reconfiguration of the SPS network. To this end, this work implemented a damage control method for a notional Next Generation Integrated Power System. This thesis presents a static implementation of a dynamic formulation of a new damage control method at the DC zonal Integrated Flight Through Power system level. The proposed method used a constrained binary genetic algorithm to find an optimal network configuration. An optimal network configuration is a configuration which restores all of the de-energized loads that are possible to be restored based on the priority of the load without violating the system operating constraints. System operating limits act as constraints in the static damage control implementation. Off-line studies were conducted using an example power system modeled in PSCAD, an electromagnetic time domain transient simulation environment and study tool, to evaluate the effectiveness of the damage control method in restoring the power system. The simulation results for case studies showed that, in approximately 93% of the cases, the proposed damage algorithm was able to find the optimal network configuration that restores the power system network without violating the power system operating constraints.
10

Online prediction of the post-disturbance frequency behaviour of a power system

Wall, Peter Richard January 2013 (has links)
The radical changes that are currently occurring in the nature of power systems means that in the future it may no longer be possible to guarantee security of supply using offline security assessment and planning. The increased uncertainty, particularly the reduction and variation in system inertia that will be faced in the future must be overcome through the use of adaptive online solutions for ensuring system security. The introduction of synchronised measurement technology means that the wide area real time measurements that are necessary to implement these online actions are now available.The objective of the research presented in this thesis was to create methods for predicting the post-disturbance frequency behaviour of a power system with the intent of contributing to the development of real time adaptive corrective control for future power systems. Such a prediction method would generate an online prediction based on wide area measurements of frequency and active power that are recorded within the period of approximately one second after a disturbance to the active power balance of the system. Predictions would allow frequency control to respond more quickly and efficiently as it would no longer be necessary to wait for the system frequency behaviour to violate pre-determined thresholds.The research presented in this thesis includes the creation of an online method for the simultaneous detection of the time at which a disturbance occurred in a power system, or area of a power system, and the estimation of the inertia of that system, or area. An existing prediction method based on approximate models has been redesigned to eliminate its dependence on offline information. Furthermore, the thesis presents the novel application of pattern classification theory to frequency prediction and a five class example of pattern classification is implemented.

Page generated in 0.0975 seconds