• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 613
  • 473
  • 88
  • 26
  • 26
  • 26
  • 26
  • 26
  • 24
  • 19
  • 16
  • 13
  • 8
  • 8
  • 6
  • Tagged with
  • 1500
  • 1500
  • 827
  • 450
  • 267
  • 247
  • 244
  • 224
  • 209
  • 208
  • 190
  • 186
  • 183
  • 175
  • 134
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Replacement of seven 132/66 kv distance protection schemes by means of a generic relay implemented as a strategic spare

Harris, Raymond Trevor January 2000 (has links)
Eskom is experiencing problems in the field of protection maintenance and in-service breakdowns which negatively influence the quality of electrical supply to the consumer, an integral component of the utility business. These facts initiated the research into the further development of a generic relay to be implemented as a strategic spare for the replacement of several schemes operating within Eskom’s southern region. These include the electromechanical, solid state and numerical distance protection relay and scheme failures on the 132 / 66 kV feeder network. Hence, the primary objective of the research is to develop, test and configure the strategic spare in terms of software and peripheral hardware for the input and output terminal connections, generic equations and settings for the purpose of the scheme replacements. The various schemes are assessed for stepped distance and permissive intertripping for three or single pole operation. This is done in conjunction with the internal and external circuit diagrams in order to understand the detailed operation of the scheme and to ensure the effective implementation of the strategic spare. The generic relay is configured for the emergency replacement of the various schemes during in-service breakdowns. This constitutes a temporary installation and therefore the downtime in essence, of all the distance protection schemes that require replacement, is limited to a minimum. This dissertation therefore explores the implementation of the strategic spare.
222

Statistical viability assessment of a photovoltaic system in the presence of data uncertainty

Clohessy, Chantelle May January 2017 (has links)
This thesis investigates statistical techniques that can be used to improve estimates and methods in feasibility assessments of photovoltaic (PV) systems. The use of these techniques are illustrated for a case study of a 1MW PV system proposed for the Nelson Mandela Metropolitan University South Campus in Port Elizabeth, South Africa. The results from the study provide strong support for the use of multivariate profile analysis and interval estimate plots for the assessment of solar resource data. A unique view to manufacturing process control in the generation of energy from a PV system is identified. This link between PV energy generation and process control is lacking in the literature and exploited in this study. Variance component models are used to model power output and energy yield estimates of the proposed PV system. The variance components are simulated using Bayesian simulation techniques. Bayesian tolerance intervals are derived from the variance components and are used to determine what percentage of future power output and energy yield values fall within an interval with a certain probability. The results from the estimated tolerance intervals were informative and provided expected power outputs and energy yields for a given month and specific season. The methods improve on current techniques used to assess the energy output of a system.
223

Experimental investigations on performance enhancement of a photovoltaic cooling system

Lin, Chen January 2017 (has links)
University of Macau / Faculty of Science and Technology / Department of Electromechanical Engineering
224

Characterisation of performance limiting defects in photovoltaic devices using electroluminescence and related techniques

Crozier, Jacqueline Louise January 2015 (has links)
Solar cells allow the energy from the sun to be converted into electrical energy; this makes solar energy an environmentally friendly, sustainable alternative to fossil fuel energy sources. Solar cells are connected together in a photovoltaic (PV) module to provide the higher current, voltage and power outputs necessary for electrical applications. However, the performance of PV modules can limited by the degradation and defects. PV modules can be characterised using various opto-electronic techniques, each providing information about the performance of the module. The current-voltage (I-V) characteristic curve of a module being the most commonly used characterisation technique. The I-V curve is typically measured in outdoor, fully illuminated, conditions. This allows performance parameters such as short circuit current (ISC), open circuit voltage (VOC) and maximum power (PMAX) to be determined. However, it can be difficult to determine the root cause of the performance drop from the I-V curve alone. Electroluminescence (EL) is a module characterisation technique that allows defects and failures in PV modules to be successfully identified. This study investigates the characterisation of solar cells and photovoltaic modules using EL. EL occurs when a solar cell or module is forward biased and the injected electron-hole pairs recombine radiatively. The intensity of the emitted EL is related the applied voltage and the material properties. EL imaging is a useful characterisation technique in identifying module defects and failures. Defects such as micro-cracks, broken contact fingers and fractures are detected in EL images as well as material features such as grain boundaries. The common defects in crystalline silicon are catalogued and the possible causes are discussed. An experimental setup was developed in order to systematically take a high resolution EL image of every cell in the module and record the applied voltage and current. This produces a very detailed, clear, image of each cell with a pixel size in the micrometre range. This process is time consuming to acquire an EL image of an entire module so alternatively a different setup can be used and an EL image of a whole module can be captured in a single frame with an increased pixel size in the millimetre range. For EL imaging a silicon charge-coupled device (CCD) camera was used because it has very good spatial resolution however this sensor is only sensitive to wavelength in the range of 300-1200 nm. There is an overlap in wavelengths from about 900 to 1100 nm allowing the EL emitted from silicon solar cells to be detected. In conjunction with the high-resolution EL system an image processing program was developed to crop, adjust and align the images so only the relevant cell was included. This program also automatically detects certain defects that have a regular shape. Micro-cracks, broken fingers and striation rings are automatically identified. The program has an adjustable sensitivity to identify small or large defects. Defective cells are distinguished from undamaged cells by comparing the binary images to the ideal, undamaged cell. The current-voltage curves and the performance parameters of modules were compared with the EL images in order to discuss and identify power limiting defects. Features that remove significant portions of the cell from electrical contact such as micro-cracks are shown to have a larger effect of the performance of the module. Other features such as broken contact fingers, contact forming failures and striation rings do not significantly lower the performance of the module. Thus an understanding of how different features affect the module performance is important in order to correctly interpret the EL results. The intensity of the luminescence emitted is related to the applied voltage and the quantum efficiency of the cell material. The spectrum of the emitted luminescence was modelled and related to the recombination properties of the cell such as surface recombination velocity and minority carrier diffusion length/lifetime. In this study the emitted spectrum was modelled and the effects of recombination properties of the cell on the emitted spectrum were examined. The spectrum of the detected EL was modelled, dependent on the sensitivity of the camera, the transmission of the filters and the emitted photon flux. The integration of short-pass filters into the experimental setup in order to isolate short-wavelength luminescence was discussed. There is a proportional relationship between the intensity of the emitted EL and the local junction voltage. Resistive losses like series and shunt resistances lower the applied voltage and thus affect the EL image. The voltage dependence was assessed by comparing EL images taken at different applied biases. Analysis of the variation in EL intensity with voltage was successful in determining the origin of certain features in an EL image. Certain defects, those that are related to series resistance or shunting are highly voltage dependent. When a feature has little or no dependence on voltage then the defect could be in the laminate layers and not in the cell material. The results of this study allow for in-depth analysis of the defects found in PV modules using the high resolution EL imaging system and the image processing routine. The development of an image processing routine allows the interpretation of the EL image to be done automatically, resulting in a faster and more efficient process. By understanding the defects visible in the EL image, the test is more meaningful and allows the results to be used to predict module performance and potential failures.
225

Simulation of transient phenomena in high voltage direct-current converter systems

Bhattacharya, Subroto January 1987 (has links)
In this thesis models for the simulation of transient phenomena in high voltage direct-current systems are developed. The new converter model is versatile and the solution algorithm is free from numerical oscillations. A new generic inverter control described in this thesis is based on a predictive approach. Steady-state and transient simulations of two-terminal and multi-terminal (i.e., a parallel converter system) high voltage direct-current systems are carried out using the new converter system model. Comparison between the two-terminal transient simulation results and the high voltage direct-current simulator outputs shows good agreement. An alternating-current/direct-current initialization procedure for the Electromagnetic Transients Program (EMTP) has been investigated and a novel initialization algorithm has been suggested in this thesis. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
226

Simulation of integrated hydro-electric & thermal plant systems using GPSSV

Riley, William V. January 1977 (has links)
This thesis demonstrates the utility of computer simulation in the modelling of hydro-electric and thermal plant operations. It focuses on models of selected facilities in the British Columbia Hydro and Power Authority's integrated system. Four different simulation models are developed. Each successive model develops a variation of the basic program to accommodate the different hydro-electric and thermal plant configurations. When more than one energy producing facility is included in a particular simulation, they are operated on a coordinated basis. The purpose of the models is to assess the energy producing capabilities of alternative configurations. Two types of experiments are performed on the models: model configuration and operating coordinating policy. In terms of the hydro-electric facilities, the scope of the models extends from the simulation of river inflows to reservoirs, through the energy generation phase, to the resultant down river flow. Generally, thermal plant operation is a function of reservoir status. The IBM GPSSV computer language is used in the modelling process. By considering the simulation output over the two types of experiments, it is possible to draw conclusions concerning the ability of certain facility configurations to meet specified energy demands. These conclusions can facilitate B.C. Hydro in the management of its integrated system with respect to planning the construction of new facilities and establishing coordinating-operating policies. Additionally, the value of using GPSSV in the modelling process is discussed. / Business, Sauder School of / Graduate
227

A converter model for the digital simulation of transients in AC/DC transmission systems

Chiu, But-Chung January 1980 (has links)
The successful application of HVDC transmission links requires correct predictions of the performance of the dc link and the ac system to which it is interconnected. Whatever the system configuration, the steady-state, dynamic and transient behaviour of the associated dc and ac systems are mostly interdependent. To simulate these phenomena with digital computers, converter stations must be modelled in more detail than as simple dc sources. This thesis discusses the development and implementation of a converter model which enables the converter bridge circuits to be represented in detail and the valve ignition to be controlled in the constant current mode. The model has been added to the U.B.C. Electromagnetic Transients Program to permit simulations of the complete ac/dc system. It is used to analyze the harmonics during steady-state operation, and to compare the results with those obtained from conventional (approximate) formulae. In a transient case, the new model gives closer agreement with field measurements than the simplified model used before. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
228

Protective Relaying Student Laboratory

Pretzer, Kenan W 01 May 2017 (has links)
Facing a rapidly-changing power industry, the electrical engineering department at Cal Poly San Luis Obispo proposed Advanced Power Systems Initiatives to better prepare its students for entering the power industry. These initiatives call for the creation of a new laboratory curriculum that uses microprocessor-based relays to reinforce the fundamental concepts of power system protection. This paper summarizes a laboratory system fit for this task and presents a set of proposed laboratory experiments to establish a new laboratory course at Cal Poly. The experiments expose students to the capabilities of industry-standard microprocessor-based relays through hands-on procedures that demonstrate common power system protection schemes. Relays studied in this project support transformer, transmission line, and induction motor protection.
229

Development of a dynamic multivariate power system inertia model

Sibeko, Bonginkosi Johannes January 2018 (has links)
A research project submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfillment of the requirements for the degree of Master of Science in Engineering, 2018. / The power system inertia immediately following small and large system disturbances was investigated. By understanding factors affecting the system inertia and primary frequency response behaviour, an online inertia model was developed. Historical data was extracted from the Eskom Energy Management System (EMS) and Wide Area Monitoring System (WAMS). The developed model using Multivariate Analysis (MVA) includes measured and estimated data from Eskom generators, Renewable Energy Sources (RESs) and the interconnected Southern African Power Pool (SAPP). Inertia plus Fast Primary (Frequency) Response (FPR) (as determined by the load behaviour) and system inertia models were developed from June 2015-December 2016 and validated with past frequency disturbance events (June 2014-March 2017). From the comparison between the measured and model results for 355 actual disturbances, 225 disturbances resulted in errors within ±5% and 51 events resulted in errors between ±5% and ±10%. Eight disturbances caused errors greater than ±10%, which were largely from trips at particular large power stations and HVDC. During a large disturbance, the multivariate coefficients for Renewable Energy Sources, HVDC and interconnectors were very small for the pure inertia model (excluding the load frequency behaviour and the generator damping). In contrast, the spinning reserve provides significant contribution and is location based. The location of a disturbance affects the FPR behaviour and the system inertia but not the Rate of Change of Frequency (RoCoF) with reference to the central power station. The strong and weak areas with respect of the stiffness of the system (extent of frequency nadir for particular disturbances) were identified. This can contribute to future grid planning and real-time operations in managing the system inertia and primary frequency response. The model is expected to improve with time, as the accuracy of a statistical approach requires large amounts of data. The model can be used to determine and monitor the maximum level of RES in real time. / XL2019
230

Electrical Properties Degradation of Photovoltaic Modules Caused by Lightning Induced Voltage

Jiang, Taosha 17 May 2014 (has links)
Lightning is one of the main factors that cause Photovoltaic (PV) systems to fail. The PV modules inside PV systems, like any other electric equipment, will be degraded under electrical stress. The effect of electrical degradation of the PV modules caused by lightning induced voltage has been rarely reported. In the dissertation, the electrical properties degradation of a polycrystalline silicon module was studied. Firstly, lightning impulse voltages of positive polarity ranging from low to high are applied on different groups of the testing modules. All these lightning impulse voltage tests are conducted in the same experimental condition except for their stress voltage magnitudes. The maximum power output, I-V characteristics, and dark forward I-V curve are measured and reported periodically during the lightning impulse voltage tests. By comparing the maximum output power and changes in the internal electrical properties, it could be concluded that lightning impulse voltages, even medium voltage levels, will cause degradation to the sample. The relationship of the maximum output power and the number of applied impulses for different testing voltage levels are compared. An analysis of the electrical property changes caused by the lightning impulse voltages is presented. Secondly, a group of samples are tested with lightning impulse voltage of negative polarity. A comparison of the impulse voltage aging effects at the same voltage level with positive polarity is made. The maximum power output drop caused by positive and negative lightning impulses are compared. Laboratory results revealed that positive and negative lightning impulses will not only influence the degree of degradation, but also lead to different electrical property changes. Finally, a comparison of the effect of lightning impulses combined with other stress factors are discussed. The study simulates a field-aged sample’s behavior at lightning impulse voltage testing conditions. The result suggests that the degradation caused by lightning impulse voltage is greatly accelerated when the sample has bubbles and delamination. Electrical breakdown of the module is caused by the failure of the insulation.

Page generated in 0.0557 seconds