• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • Tagged with
  • 30
  • 30
  • 22
  • 12
  • 12
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multi-scale controls on spatial patterns of soil water storage in the hummocky regions of North America

Biswas, Asim 11 July 2011
The intensification of land-water management due to agriculture, forestry, and urbanization is a global phenomenon increasing the pressure on worlds water resources and threatening water security in North America. The Prairie Pothole Region of North America covers approximately 775,000 km2 and contains millions of wetlands that serve important hydrological and ecological functions. The unique hummocky topography and the variable effect of different processes contribute to high spatio-temporal variability in soil water, posing major challenges in hydrological studies. The objectives of this study were to a) examine the spatial pattern of soil water storage and its scale and location characteristics; and b) to identify its controls at multiple scales. Soil water content at 20 cm intervals down to 140 cm was measured along a transect extending over several knolldepression cycles in a hummocky landscape. High water storage in depressions and low water storage on the knolls created a spatial pattern that was inversely related to elevation. Spatial patterns were strongly similar within any given season (intra-season rank correlation coefficient as high as 0.99), moreso than between the same season over different years (inter-annual rank correlation coefficient as high as 0.97). Less similar spatial patterns were observed between different seasons (inter-season rank correlation coefficients as high as 0.90). While the intra-season and inter-annual spatial patterns were similar at scales >18 m, the inter-season spatial patterns were similar at much large scales (>72 m). This may be due to the variations in landform elements and micro-topography. The similarity at scales >72 m were present at any time and depth. However, small- and medium-scale spatial patterns changed with depth and with season due to a change in the hydrological processes. The relative dominance of a given set of processes operating both within a season and for the same season over different years yielded strong intra-season and inter-annual similarity at scales >18 m. Moreover, similarity was stronger with increasing depth, and was thought to be due to the dampening effect of overlying soil layers that are more dynamic. Similarity of spatial patterns over time helps to identify the location that best represents the field averaged soil water and improves sampling efficiency. Change in the similarity of scales of spatial pattern helps identify the change in sampling domain as controlled by hydrological processes. The scale information can be used to improve prediction for use in environmental management and modeling of different surface and subsurface hydrological processes. The similarity of spatial pattern between the surface and subsurface layers help make inferences on deep layer hydrological processes as well as groundwater dynamics from surface water measurements.
12

Hydrologic response to spring snowmelt and extreme rainfall events of different landscape elements within a prairie wetland basin

Lungal, Murray 29 June 2009
Depressions in the prairie pothole region (PPR) are commonly referred to as sloughs and were formed during the most recent glacial retreat, ~10-17 kyrs ago. They are hydrologically isolated, as they are not permanently connected by surface inflow or outflow channels. Extreme thunderstorms are common across the prairies and the hydrologic response of isolated wetlands to intense rainfall events is poorly understood. The purpose of this study was to compare the response of different landscape/ecological elements of a prairie wetland to snowmelt and extreme rainstorms. Comparisons were completed by investigating the spring snowmelts of 2005 and 2006 and the rainstorm event of June 17 - 18, 2005, in which 103 mm fell at the St. Denis National Wildlife Area (NWA) Saskatchewan, Canada (106°06'W, 52°02'N). The wetland was separated into five landscape positions, the pond center (PC), grassed edge (GE), tree ring (TR), convex upland (CXU), and concave upland (CVU). Comparison of the rainfall of June 17 18, 2005 with the spring snowmelts of 2005 and 2006 indicates that the hydrologic consequences of these different events are similar. Overland flow, substantial ponding in lowlands, and recharge of the groundwater occur in both cases. Analysis of this intense rainfall has provided evidence that common, intense rainstorms are hydrologically equivalent to the annual spring snowmelt, the major source of water for closed catchments in the PPR.
13

Greenhouse gas emission from a Prairie pothole landscape in Western Canada

Dunmola, Adedeji Samuel 10 April 2007 (has links)
Knowing the control of landscape position in greenhouse gas (GHG) emission from the Prairie pothole region is necessary to provide reliable emission estimates needed to formulate strategies for reducing emission from the region. Presented here are results of a study investigating the control of landscape position on the flux of nitrous oxide (N2O) and methane (CH4) from an agricultural soil. Field flux of N2O and CH4 and associated soil parameters from the Upper, Middle, Lower and Riparian slope positions were monitored from spring to fall of 2005, and spring of 2006, at the Manitoba Zero-Tillage Research Association (MTRZA) farm, 17.6km North of Brandon, MB. The field site consisted of a transect of 128 chambers segmented into the four landscape positions, with either all chambers or a subset of the chambers (32) sampled on select days. Spring thaw is an important period for annual inventory of N2O emission, thus, soil samples were also collected from the four slope positions in fall 2005, and treated in the laboratory to examine how antecedent moisture and landscape position affect the freeze-thaw emission of N2O from soil. Daily emissions of N2O and CH4 for 2005 were generally higher than for 2006, the former being a wetter year. There was high temporal variability in N2O and CH4 emission, with high fluxes associated with events like spring thaw and fertilizer application in the case of N2O, and rapid changes in soil moisture and temperature in the case of CH4. There was a high occurrence of hotspots for N2O emission at the Lower slope, associated with its high soil water-filled porosity (WFP) and carbon (C) availability. The Riparian zone was not a source of N2O emission, despite its soil WFP and organic C being comparable with the Lower slope. The hotspot for CH4 emission was located at the Riparian zone, associated with its high soil WFP and C availability. The Upper and Middle slope positions gave low emission or consumed CH4, associated with having low soil WFP and available C. This pattern in N2O and CH4 emission over the landscape was consistent with examination of entire 128 chambers on the transect or the 32 subset chambers. Significantly lowering the antecedent moisture content of soil by drying eliminated the freeze-thaw emission of N2O, despite the addition of nitrate to the soil. This was linked to drying slightly reducing the denitrifying enzyme activity (DEA) of soil. The highest and earliest freeze-thaw emission of N2O was from the Riparian zone, associated with its high antecedent moisture content, DEA and total organic C content. The addition of nitrate to soil before freezing failed to enhance freeze-thaw emission of N2O from the Upper, Middle and Lower slope positions, but increased emission three-fold for the Riparian zone. Despite the greater potential of the Riparian zone to produce N2O at thaw compared to the Upland slopes, there was no spring-thaw emission of N2O from the zone on the field. This was because this zone did not freeze over the winter, due to insulation by high and persistent snow cover, vegetation and saturated condition. The denitrifying potential and freeze-thaw N2O emission increased in going from the Upper to the Lower slope position, similar to the pattern of N2O emission observed on the field. The localization of hotspots for N2O and CH4 emission within the landscape was therefore found to be driven by soil moisture and C availability. When estimating GHG emission from soil, higher emission index for N2O and CH4 should be given to poorly-drained cropped and vegetated areas of the landscape, respectively. The high potential of the Riparian zone for spring-thaw emission of N2O should not be discountenanced when conducting annual inventory of N2O emission at the landscape scale. When fall soil moisture is high, snow cover is low, and winter temperature is very cold, freeze-thaw emission of N2O at the Riparian zones of the Prairie pothole region may be very high. / May 2007
14

Hydrologic response to spring snowmelt and extreme rainfall events of different landscape elements within a prairie wetland basin

Lungal, Murray 29 June 2009 (has links)
Depressions in the prairie pothole region (PPR) are commonly referred to as sloughs and were formed during the most recent glacial retreat, ~10-17 kyrs ago. They are hydrologically isolated, as they are not permanently connected by surface inflow or outflow channels. Extreme thunderstorms are common across the prairies and the hydrologic response of isolated wetlands to intense rainfall events is poorly understood. The purpose of this study was to compare the response of different landscape/ecological elements of a prairie wetland to snowmelt and extreme rainstorms. Comparisons were completed by investigating the spring snowmelts of 2005 and 2006 and the rainstorm event of June 17 - 18, 2005, in which 103 mm fell at the St. Denis National Wildlife Area (NWA) Saskatchewan, Canada (106°06'W, 52°02'N). The wetland was separated into five landscape positions, the pond center (PC), grassed edge (GE), tree ring (TR), convex upland (CXU), and concave upland (CVU). Comparison of the rainfall of June 17 18, 2005 with the spring snowmelts of 2005 and 2006 indicates that the hydrologic consequences of these different events are similar. Overland flow, substantial ponding in lowlands, and recharge of the groundwater occur in both cases. Analysis of this intense rainfall has provided evidence that common, intense rainstorms are hydrologically equivalent to the annual spring snowmelt, the major source of water for closed catchments in the PPR.
15

Estimating water storage of prairie pothole wetlands

Minke, Adam George Nicholas 28 January 2010 (has links)
The Prairie Pothole Region (PPR) of North American contains millions of wetlands in shallow depressions that provide important hydrological and ecological functions. To assess and model these functions it is important to have accurate methods to quantify wetland water volume storage. Hayashi and van der Kamp (2000) developed equations suitable for calculating water volume in natural, regularly shaped wetlands when two coefficients are known. This thesis tested the robustness of their full and simplified volume (V) area (A) depth (h) methods to accurately estimate volume for the range of wetland shapes occurring across the PPR. Further, a digital elevation model (DEM) derived from light detection and ranging (LiDAR) data was used to extract the necessary data for applying the simplified V-A-h method at a broad spatial scale. Detailed topographic data were collected for 27 wetlands in the Smith Creek Research Basin and St. Denis National Wildlife Area, Saskatchewan that ranged in surface area shape. The full V-A-h method was found to accurately estimate volume (errors <5%) across wetlands of various shapes and is therefore suitable for calculating water storage in the variety of wetland shapes found in the PPR. Analysis of the simplified V-A-h method showed that the depression (p) and size (s) coefficients are sensitive to the timing of area and depth measurements and the accuracy of area measurements. Surface area and depth should be measured concurrently at two points in time to achieve volume errors <10%. For most wetlands this means measuring area and depth in spring when water levels are approximately 70% of hmax, and also in late summer prior to water depths dropping below 0.1 m. The wetted perimeter of the deepest water level must also be measured accurately to have volume errors less than 10%. Applying the simplified V-A-h method to a LiDAR DEM required GIS analysis to extract elevation contours that represent potential water surfaces. From these data the total wetland depth and s coefficient were estimated. Volume estimates through this LiDAR V-A-h method outperformed estimates from two volume-area equations commonly used in the PPR. Furthermore, the process to extract the wetland coefficients from the LiDAR DEM was automated such that storage could be estimated for the entire St. Denis National Wildlife Area. Applying the simplified V-A-h method according to the guidelines and data sources recommended here will allow for more accurate, time-effective water storage estimates at multiple spatial scales, thereby facilitating evaluation and modelling of hydrological and ecological functions.
16

Multi-scale controls on spatial patterns of soil water storage in the hummocky regions of North America

Biswas, Asim 11 July 2011 (has links)
The intensification of land-water management due to agriculture, forestry, and urbanization is a global phenomenon increasing the pressure on worlds water resources and threatening water security in North America. The Prairie Pothole Region of North America covers approximately 775,000 km2 and contains millions of wetlands that serve important hydrological and ecological functions. The unique hummocky topography and the variable effect of different processes contribute to high spatio-temporal variability in soil water, posing major challenges in hydrological studies. The objectives of this study were to a) examine the spatial pattern of soil water storage and its scale and location characteristics; and b) to identify its controls at multiple scales. Soil water content at 20 cm intervals down to 140 cm was measured along a transect extending over several knolldepression cycles in a hummocky landscape. High water storage in depressions and low water storage on the knolls created a spatial pattern that was inversely related to elevation. Spatial patterns were strongly similar within any given season (intra-season rank correlation coefficient as high as 0.99), moreso than between the same season over different years (inter-annual rank correlation coefficient as high as 0.97). Less similar spatial patterns were observed between different seasons (inter-season rank correlation coefficients as high as 0.90). While the intra-season and inter-annual spatial patterns were similar at scales >18 m, the inter-season spatial patterns were similar at much large scales (>72 m). This may be due to the variations in landform elements and micro-topography. The similarity at scales >72 m were present at any time and depth. However, small- and medium-scale spatial patterns changed with depth and with season due to a change in the hydrological processes. The relative dominance of a given set of processes operating both within a season and for the same season over different years yielded strong intra-season and inter-annual similarity at scales >18 m. Moreover, similarity was stronger with increasing depth, and was thought to be due to the dampening effect of overlying soil layers that are more dynamic. Similarity of spatial patterns over time helps to identify the location that best represents the field averaged soil water and improves sampling efficiency. Change in the similarity of scales of spatial pattern helps identify the change in sampling domain as controlled by hydrological processes. The scale information can be used to improve prediction for use in environmental management and modeling of different surface and subsurface hydrological processes. The similarity of spatial pattern between the surface and subsurface layers help make inferences on deep layer hydrological processes as well as groundwater dynamics from surface water measurements.
17

Controls on connectivity and streamflow generation in a Canadian Prairie landscape

2015 April 1900 (has links)
Linkages between the controls on depressional storage and catchment streamflow response were examined in a wetland dominated basin in the Canadian Prairie Pothole region through a combination of field monitoring and modelling. Snowmelt, surface storage, water table elevation, atmospheric fluxes, and streamflow were monitored during spring snowmelt and summer in a 1 km2 sub-catchment containing a semi-permanent pond complex connected via an intermittent stream. Snow accumulation in the basin in spring of the 2013 study year was the largest in the 24-year record. Rainfall totals in 2013 were close to the long term average, though June was an anomalously wet month. The water budget of the pond complex indicates that there was a significant subsurface contribution to surface storage, in contrast to previous studies in this region. Following snowmelt, subsurface connectivity occurred between uplands and the stream network due to activation of the effective transmission zone in areas where the water table was located near the ground surface, allowing significant lateral movement of water into the stream network. Modelling results suggest there was significant infiltration into upland soils during the study period and that upland ponds are an important consideration for accurately simulating catchment discharge. The flux of groundwater to the wetland complex during periods of subsurface connectivity was also important for maintaining and re-establishing surface connectivity and streamflow. As the observed period of surface and subsurface hydrological connectivity was one of the longest on record in the catchment due to very wet conditions, the results of this study denote observations of the wet extremes of the hydrological regime important for proper understanding, modelling, and prediction of streamflow in the region.
18

Greenhouse gas emission from a Prairie pothole landscape in Western Canada

Dunmola, Adedeji Samuel 10 April 2007 (has links)
Knowing the control of landscape position in greenhouse gas (GHG) emission from the Prairie pothole region is necessary to provide reliable emission estimates needed to formulate strategies for reducing emission from the region. Presented here are results of a study investigating the control of landscape position on the flux of nitrous oxide (N2O) and methane (CH4) from an agricultural soil. Field flux of N2O and CH4 and associated soil parameters from the Upper, Middle, Lower and Riparian slope positions were monitored from spring to fall of 2005, and spring of 2006, at the Manitoba Zero-Tillage Research Association (MTRZA) farm, 17.6km North of Brandon, MB. The field site consisted of a transect of 128 chambers segmented into the four landscape positions, with either all chambers or a subset of the chambers (32) sampled on select days. Spring thaw is an important period for annual inventory of N2O emission, thus, soil samples were also collected from the four slope positions in fall 2005, and treated in the laboratory to examine how antecedent moisture and landscape position affect the freeze-thaw emission of N2O from soil. Daily emissions of N2O and CH4 for 2005 were generally higher than for 2006, the former being a wetter year. There was high temporal variability in N2O and CH4 emission, with high fluxes associated with events like spring thaw and fertilizer application in the case of N2O, and rapid changes in soil moisture and temperature in the case of CH4. There was a high occurrence of hotspots for N2O emission at the Lower slope, associated with its high soil water-filled porosity (WFP) and carbon (C) availability. The Riparian zone was not a source of N2O emission, despite its soil WFP and organic C being comparable with the Lower slope. The hotspot for CH4 emission was located at the Riparian zone, associated with its high soil WFP and C availability. The Upper and Middle slope positions gave low emission or consumed CH4, associated with having low soil WFP and available C. This pattern in N2O and CH4 emission over the landscape was consistent with examination of entire 128 chambers on the transect or the 32 subset chambers. Significantly lowering the antecedent moisture content of soil by drying eliminated the freeze-thaw emission of N2O, despite the addition of nitrate to the soil. This was linked to drying slightly reducing the denitrifying enzyme activity (DEA) of soil. The highest and earliest freeze-thaw emission of N2O was from the Riparian zone, associated with its high antecedent moisture content, DEA and total organic C content. The addition of nitrate to soil before freezing failed to enhance freeze-thaw emission of N2O from the Upper, Middle and Lower slope positions, but increased emission three-fold for the Riparian zone. Despite the greater potential of the Riparian zone to produce N2O at thaw compared to the Upland slopes, there was no spring-thaw emission of N2O from the zone on the field. This was because this zone did not freeze over the winter, due to insulation by high and persistent snow cover, vegetation and saturated condition. The denitrifying potential and freeze-thaw N2O emission increased in going from the Upper to the Lower slope position, similar to the pattern of N2O emission observed on the field. The localization of hotspots for N2O and CH4 emission within the landscape was therefore found to be driven by soil moisture and C availability. When estimating GHG emission from soil, higher emission index for N2O and CH4 should be given to poorly-drained cropped and vegetated areas of the landscape, respectively. The high potential of the Riparian zone for spring-thaw emission of N2O should not be discountenanced when conducting annual inventory of N2O emission at the landscape scale. When fall soil moisture is high, snow cover is low, and winter temperature is very cold, freeze-thaw emission of N2O at the Riparian zones of the Prairie pothole region may be very high.
19

Greenhouse gas emission from a Prairie pothole landscape in Western Canada

Dunmola, Adedeji Samuel 10 April 2007 (has links)
Knowing the control of landscape position in greenhouse gas (GHG) emission from the Prairie pothole region is necessary to provide reliable emission estimates needed to formulate strategies for reducing emission from the region. Presented here are results of a study investigating the control of landscape position on the flux of nitrous oxide (N2O) and methane (CH4) from an agricultural soil. Field flux of N2O and CH4 and associated soil parameters from the Upper, Middle, Lower and Riparian slope positions were monitored from spring to fall of 2005, and spring of 2006, at the Manitoba Zero-Tillage Research Association (MTRZA) farm, 17.6km North of Brandon, MB. The field site consisted of a transect of 128 chambers segmented into the four landscape positions, with either all chambers or a subset of the chambers (32) sampled on select days. Spring thaw is an important period for annual inventory of N2O emission, thus, soil samples were also collected from the four slope positions in fall 2005, and treated in the laboratory to examine how antecedent moisture and landscape position affect the freeze-thaw emission of N2O from soil. Daily emissions of N2O and CH4 for 2005 were generally higher than for 2006, the former being a wetter year. There was high temporal variability in N2O and CH4 emission, with high fluxes associated with events like spring thaw and fertilizer application in the case of N2O, and rapid changes in soil moisture and temperature in the case of CH4. There was a high occurrence of hotspots for N2O emission at the Lower slope, associated with its high soil water-filled porosity (WFP) and carbon (C) availability. The Riparian zone was not a source of N2O emission, despite its soil WFP and organic C being comparable with the Lower slope. The hotspot for CH4 emission was located at the Riparian zone, associated with its high soil WFP and C availability. The Upper and Middle slope positions gave low emission or consumed CH4, associated with having low soil WFP and available C. This pattern in N2O and CH4 emission over the landscape was consistent with examination of entire 128 chambers on the transect or the 32 subset chambers. Significantly lowering the antecedent moisture content of soil by drying eliminated the freeze-thaw emission of N2O, despite the addition of nitrate to the soil. This was linked to drying slightly reducing the denitrifying enzyme activity (DEA) of soil. The highest and earliest freeze-thaw emission of N2O was from the Riparian zone, associated with its high antecedent moisture content, DEA and total organic C content. The addition of nitrate to soil before freezing failed to enhance freeze-thaw emission of N2O from the Upper, Middle and Lower slope positions, but increased emission three-fold for the Riparian zone. Despite the greater potential of the Riparian zone to produce N2O at thaw compared to the Upland slopes, there was no spring-thaw emission of N2O from the zone on the field. This was because this zone did not freeze over the winter, due to insulation by high and persistent snow cover, vegetation and saturated condition. The denitrifying potential and freeze-thaw N2O emission increased in going from the Upper to the Lower slope position, similar to the pattern of N2O emission observed on the field. The localization of hotspots for N2O and CH4 emission within the landscape was therefore found to be driven by soil moisture and C availability. When estimating GHG emission from soil, higher emission index for N2O and CH4 should be given to poorly-drained cropped and vegetated areas of the landscape, respectively. The high potential of the Riparian zone for spring-thaw emission of N2O should not be discountenanced when conducting annual inventory of N2O emission at the landscape scale. When fall soil moisture is high, snow cover is low, and winter temperature is very cold, freeze-thaw emission of N2O at the Riparian zones of the Prairie pothole region may be very high.
20

The influence of landscape characteristics on duck nesting success in the Missouri Coteau Region of North Dakota

Stephens, Scott Eugene. January 2003 (has links) (PDF)
Thesis (Ph. D.)--Montana State University--Bozeman, 2003. / Typescript. Chairperson, Graduate Committee: Jay Rotella. Includes bibliographical references.

Page generated in 0.053 seconds