Spelling suggestions: "subject:"premicrorna"" "subject:"premicrornas""
1 |
COMPUTER METHODS FOR PRE-MICRORNA SECONDARY STRUCTURE PREDICTIONHan, Dianwei 01 January 2012 (has links)
This thesis presents a new algorithm to predict the pre-microRNA secondary structure. An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions.
It has been shown that studying the functions of multiple genes and predicting the secondary structure of multiple related microRNA is more important and meaningful since many polygenic traits in animals and plants can be controlled by more than a single gene. We propose a parallel algorithm based on the master-slave architecture to predict the secondary structure from an input sequence. The experimental results show that our algorithm is able to produce the optimal secondary structure of polycistronic microRNAs. The trend of speedups of our parallel algorithm matches that of theoretical speedups.
Conserved secondary structures are likely to be functional, and secondary structural characteristics that are shared between endogenous pre-miRNAs may contribute toward efficient biogenesis. So identifying conserved secondary structure is very meaningful and identifying conserved characteristics in RNA is a very important research field. After the characteristics are extracted from the secondary structures of RNAs, corresponding patterns or rules could be dug out and used.
We propose to use the conserved microRNA characteristics in two aspects: to improve prediction through knowledge base, and to classify the real specific microRNAs from pseudo microRNAs. Through statistical analysis of the performance of classification, we verify that the conserved characteristics extracted from microRNAs’ secondary structures are precise enough.
Gene suppression is a powerful tool for functional genomics and elimination of specific gene products. However, current gene suppression vectors can only be used to silence a single gene at a time. So we design an efficient poly-cistronic microRNA vector and the web-based tool allows users to design their own microRNA vectors online.
|
2 |
Analysis of microRNA precursors in multiple species by data mining techniques / Análise de precursores de microRNA em múltiplas espécies utilizando técnicas de mineração de dadosLopes, Ivani de Oliveira Negrão 18 June 2014 (has links)
RNA Sequencing has recently emerged as a breakthrough technology for microRNA (miRNA) discovery. This technology has allowed the discovery of thousands of miRNAs in a large number of species. However, despite the benefits of this technology, it also carries its own limitations, including the need for sequencing read libraries and of the genome. Differently, ab initio computational methods need only the genome as input to search for genonic locus likely to give rise to novel miRNAs. In the core of most of these methods, there are predictive models induced by using data mining techniques able to distinguish between real (positive) and pseudo (negative) miRNA precursors (pre-miRNA). Nevertheless, the applicability of current literature ab initio methods have been compromised by high false detection rates and/or by other computational difficulties. In this work, we investigated how the main aspects involved in the induction of predictive models for pre-miRNA affect the predictive performance. Particularly, we evaluate the discriminant power of feature sets proposed in the literature, whose computational costs and composition vary widely. The computational experiments were carried out using sequence data from 45 species, which covered species from eight phyla. The predictive performance of the classification models induced using large training set sizes (≥ 1; 608) composed of instances extracted from real and pseudo human pre-miRNA sequences did not differ significantly among the feature sets that lead to the maximal accuracies. Moreover, the differences in the predictive performances obtained by these models, due to the learning algorithms, were neglectable. Inspired by these results, we obtained a feature set which can be computed 34 times faster than the less costly among those feature sets, producing the maximal accuracies, albeit the proposed feature set has achieved accuracy within 0.1% of the maximal accuracies. When classification models using the elements previously discussed were induced using small training sets (120) from 45 species, we showed that the feature sets that produced the highest accuracies in the classification of human sequences were also more likely to produce higher accuracies for other species. Nevertheless, we showed that the learning complexity of pre-miRNAs vary strongly among species, even among those from the same phylum. These results showed that the existence of specie specific features indicated in previous studies may be correlated with the learning complexity. As a consequence, the predictive accuracies of models induced with different species and same features and instances spaces vary largely. In our results, we show that the use of training examples from species phylogenetically more complex may increase the predictive performances for less complex species. Finally, by using ensembles of computationally less costly feature sets, we showed alternative ways to increase the predictive performance for many species while keeping the computational costs of the analysis lower than those using the feature sets from the literature. Since in miRNA discovery the number of putative miRNA loci is in the order of millions, the analysis of putative miRNAs using a computationally expensive feature set and or inaccurate models would be wasteful or even unfeasible for large genomes. In this work, we explore most of the learning aspects implemented in current ab initio pre-miRNA prediction tools, which may lead to the development of new efficient ab initio pre-miRNA discovery tools / O sequenciamento de pequenos RNAs surgiu recentemente como uma tecnologia inovadora na descoberta de microRNAs (miRNA). Essa tecnologia tem facilitado a descoberta de milhares de miRNAs em um grande número de espécies. No entanto, apesar dos benefícios dessa tecnologia, ela apresenta desafios, como a necessidade de construir uma biblioteca de pequenos RNAs, além do genoma. Diferentemente, métodos computacionais ab initio buscam diretamente no genoma regiões prováveis de conter miRNAs. A maioria desses métodos usam modelos preditivos capazes de distinguir entre os verdadeiros (positivos) e pseudo precursores de miRNA - pre-miRNA - (negativos), os quais são induzidos utilizando técnicas de mineração de dados. No entanto, a aplicabilidade de métodos ab initio da literatura atual é limitada pelas altas taxas de falsos positivos e/ou por outras dificuldades computacionais, como o elevado tempo necessário para calcular um conjunto de atributos. Neste trabalho, investigamos como os principais aspectos envolvidos na indução de modelos preditivos de pre-miRNA afetam o desempenho preditivo. Particularmente, avaliamos a capacidade discriminatória de conjuntos de atributos propostos na literatura, cujos custos computacionais e a composição variam amplamente. Os experimentos computacionais foram realizados utilizando dados de sequências positivas e negativas de 45 espécies, cobrindo espécies de oito filos. Os resultados mostraram que o desempenho preditivo de classificadores induzidos utilizando conjuntos de treinamento com 1608 ou mais vetores de atributos calculados de sequências humanas não diferiram significativamente, entre os conjuntos de atributos que produziram as maiores acurácias. Além disso, as diferenças entre os desempenhos preditivos de classificadores induzidos por diferentes algoritmos de aprendizado, utilizando um mesmo conjunto de atributos, foram pequenas ou não significantes. Esses resultados inspiraram a obtenção de um conjunto de atributos menor e que pode ser calculado até 34 vezes mais rapidamente do que o conjunto de atributos menos custoso produzindo máxima acurácia, embora a acurácia produzida pelo conjunto proposto não difere em mais de 0.1% das acurácias máximas. Quando esses experimentos foram executados utilizando vetores de atributos calculados de sequências de outras 44 espécies, os resultados mostraram que os conjuntos de atributos que produziram modelos com as maiores acurácias utilizando vetores calculados de sequências humanas também produziram as maiores acurácias quando pequenos conjuntos de treinamento (120) calculados de exemplos de outras espécies foram utilizadas. No entanto, a análise destes modelos mostrou que a complexidade de aprendizado varia amplamente entre as espécies, mesmo entre aquelas pertencentes a um mesmo filo. Esses resultados mostram que a existência de características espécificas em pre-miRNAs de certas espécies sugerida em estudos anteriores pode estar correlacionada com a complexidade de aprendizado. Consequentemente, a acurácia de modelos induzidos utilizando um mesmo conjunto de atributos e um mesmo algoritmo de aprendizado varia amplamente entre as espécies. i Os resultados também mostraram que o uso de exemplos de espécies filogeneticamente mais complexas pode aumentar o desempenho preditivo de espécies menos complexas. Por último, experimentos computacionais utilizando técnicas de ensemble mostraram estratégias alternativas para o desenvolvimento de novos modelos para predição de pre-miRNA com maior probabilidade de obter maior desempenho preditivo do que estratégias atuais, embora o custo computacional dos atributos seja inferior. Uma vez que a descoberta de miRNAs envolve a análise de milhares de regiões genômicas, a aplicação prática de modelos preditivos de baixa acurácia e/ou que dependem de atributos computacionalmente custosos pode ser inviável em análises de grandes genomas. Neste trabalho, apresentamos e discutimos os resultados de experimentos computacionais investigando o potencial de diversas estratégias utilizadas na indução de modelos preditivos para predição ab initio de pre-miRNAs, que podem levar ao desenvolvimento de ferramentas ab initio de maior aplicabilidade prática
|
3 |
Analysis of microRNA precursors in multiple species by data mining techniques / Análise de precursores de microRNA em múltiplas espécies utilizando técnicas de mineração de dadosIvani de Oliveira Negrão Lopes 18 June 2014 (has links)
RNA Sequencing has recently emerged as a breakthrough technology for microRNA (miRNA) discovery. This technology has allowed the discovery of thousands of miRNAs in a large number of species. However, despite the benefits of this technology, it also carries its own limitations, including the need for sequencing read libraries and of the genome. Differently, ab initio computational methods need only the genome as input to search for genonic locus likely to give rise to novel miRNAs. In the core of most of these methods, there are predictive models induced by using data mining techniques able to distinguish between real (positive) and pseudo (negative) miRNA precursors (pre-miRNA). Nevertheless, the applicability of current literature ab initio methods have been compromised by high false detection rates and/or by other computational difficulties. In this work, we investigated how the main aspects involved in the induction of predictive models for pre-miRNA affect the predictive performance. Particularly, we evaluate the discriminant power of feature sets proposed in the literature, whose computational costs and composition vary widely. The computational experiments were carried out using sequence data from 45 species, which covered species from eight phyla. The predictive performance of the classification models induced using large training set sizes (≥ 1; 608) composed of instances extracted from real and pseudo human pre-miRNA sequences did not differ significantly among the feature sets that lead to the maximal accuracies. Moreover, the differences in the predictive performances obtained by these models, due to the learning algorithms, were neglectable. Inspired by these results, we obtained a feature set which can be computed 34 times faster than the less costly among those feature sets, producing the maximal accuracies, albeit the proposed feature set has achieved accuracy within 0.1% of the maximal accuracies. When classification models using the elements previously discussed were induced using small training sets (120) from 45 species, we showed that the feature sets that produced the highest accuracies in the classification of human sequences were also more likely to produce higher accuracies for other species. Nevertheless, we showed that the learning complexity of pre-miRNAs vary strongly among species, even among those from the same phylum. These results showed that the existence of specie specific features indicated in previous studies may be correlated with the learning complexity. As a consequence, the predictive accuracies of models induced with different species and same features and instances spaces vary largely. In our results, we show that the use of training examples from species phylogenetically more complex may increase the predictive performances for less complex species. Finally, by using ensembles of computationally less costly feature sets, we showed alternative ways to increase the predictive performance for many species while keeping the computational costs of the analysis lower than those using the feature sets from the literature. Since in miRNA discovery the number of putative miRNA loci is in the order of millions, the analysis of putative miRNAs using a computationally expensive feature set and or inaccurate models would be wasteful or even unfeasible for large genomes. In this work, we explore most of the learning aspects implemented in current ab initio pre-miRNA prediction tools, which may lead to the development of new efficient ab initio pre-miRNA discovery tools / O sequenciamento de pequenos RNAs surgiu recentemente como uma tecnologia inovadora na descoberta de microRNAs (miRNA). Essa tecnologia tem facilitado a descoberta de milhares de miRNAs em um grande número de espécies. No entanto, apesar dos benefícios dessa tecnologia, ela apresenta desafios, como a necessidade de construir uma biblioteca de pequenos RNAs, além do genoma. Diferentemente, métodos computacionais ab initio buscam diretamente no genoma regiões prováveis de conter miRNAs. A maioria desses métodos usam modelos preditivos capazes de distinguir entre os verdadeiros (positivos) e pseudo precursores de miRNA - pre-miRNA - (negativos), os quais são induzidos utilizando técnicas de mineração de dados. No entanto, a aplicabilidade de métodos ab initio da literatura atual é limitada pelas altas taxas de falsos positivos e/ou por outras dificuldades computacionais, como o elevado tempo necessário para calcular um conjunto de atributos. Neste trabalho, investigamos como os principais aspectos envolvidos na indução de modelos preditivos de pre-miRNA afetam o desempenho preditivo. Particularmente, avaliamos a capacidade discriminatória de conjuntos de atributos propostos na literatura, cujos custos computacionais e a composição variam amplamente. Os experimentos computacionais foram realizados utilizando dados de sequências positivas e negativas de 45 espécies, cobrindo espécies de oito filos. Os resultados mostraram que o desempenho preditivo de classificadores induzidos utilizando conjuntos de treinamento com 1608 ou mais vetores de atributos calculados de sequências humanas não diferiram significativamente, entre os conjuntos de atributos que produziram as maiores acurácias. Além disso, as diferenças entre os desempenhos preditivos de classificadores induzidos por diferentes algoritmos de aprendizado, utilizando um mesmo conjunto de atributos, foram pequenas ou não significantes. Esses resultados inspiraram a obtenção de um conjunto de atributos menor e que pode ser calculado até 34 vezes mais rapidamente do que o conjunto de atributos menos custoso produzindo máxima acurácia, embora a acurácia produzida pelo conjunto proposto não difere em mais de 0.1% das acurácias máximas. Quando esses experimentos foram executados utilizando vetores de atributos calculados de sequências de outras 44 espécies, os resultados mostraram que os conjuntos de atributos que produziram modelos com as maiores acurácias utilizando vetores calculados de sequências humanas também produziram as maiores acurácias quando pequenos conjuntos de treinamento (120) calculados de exemplos de outras espécies foram utilizadas. No entanto, a análise destes modelos mostrou que a complexidade de aprendizado varia amplamente entre as espécies, mesmo entre aquelas pertencentes a um mesmo filo. Esses resultados mostram que a existência de características espécificas em pre-miRNAs de certas espécies sugerida em estudos anteriores pode estar correlacionada com a complexidade de aprendizado. Consequentemente, a acurácia de modelos induzidos utilizando um mesmo conjunto de atributos e um mesmo algoritmo de aprendizado varia amplamente entre as espécies. i Os resultados também mostraram que o uso de exemplos de espécies filogeneticamente mais complexas pode aumentar o desempenho preditivo de espécies menos complexas. Por último, experimentos computacionais utilizando técnicas de ensemble mostraram estratégias alternativas para o desenvolvimento de novos modelos para predição de pre-miRNA com maior probabilidade de obter maior desempenho preditivo do que estratégias atuais, embora o custo computacional dos atributos seja inferior. Uma vez que a descoberta de miRNAs envolve a análise de milhares de regiões genômicas, a aplicação prática de modelos preditivos de baixa acurácia e/ou que dependem de atributos computacionalmente custosos pode ser inviável em análises de grandes genomas. Neste trabalho, apresentamos e discutimos os resultados de experimentos computacionais investigando o potencial de diversas estratégias utilizadas na indução de modelos preditivos para predição ab initio de pre-miRNAs, que podem levar ao desenvolvimento de ferramentas ab initio de maior aplicabilidade prática
|
4 |
Integrating Information Theory Measures and a Novel Rule-Set-Reduction Tech-nique to Improve Fuzzy Decision Tree Induction AlgorithmsAbu-halaweh, Nael Mohammed 02 December 2009 (has links)
Machine learning approaches have been successfully applied to many classification and prediction problems. One of the most popular machine learning approaches is decision trees. A main advantage of decision trees is the clarity of the decision model they produce. The ID3 algorithm proposed by Quinlan forms the basis for many of the decision trees’ application. Trees produced by ID3 are sensitive to small perturbations in training data. To overcome this problem and to handle data uncertainties and spurious precision in data, fuzzy ID3 integrated fuzzy set theory and ideas from fuzzy logic with ID3. Several fuzzy decision trees algorithms and tools exist. However, existing tools are slow, produce a large number of rules and/or lack the support for automatic fuzzification of input data. These limitations make those tools unsuitable for a variety of applications including those with many features and real time ones such as intrusion detection. In addition, the large number of rules produced by these tools renders the generated decision model un-interpretable. In this research work, we proposed an improved version of the fuzzy ID3 algorithm. We also introduced a new method for reducing the number of fuzzy rules generated by Fuzzy ID3. In addition we applied fuzzy decision trees to the classification of real and pseudo microRNA precursors. Our experimental results showed that our improved fuzzy ID3 can achieve better classification accuracy and is more efficient than the original fuzzy ID3 algorithm, and that fuzzy decision trees can outperform several existing machine learning algorithms on a wide variety of datasets. In addition our experiments showed that our developed fuzzy rule reduction method resulted in a significant reduction in the number of produced rules, consequently, improving the produced decision model comprehensibility and reducing the fuzzy decision tree execution time. This reduction in the number of rules was accompanied with a slight improvement in the classification accuracy of the resulting fuzzy decision tree. In addition, when applied to the microRNA prediction problem, fuzzy decision tree achieved better results than other machine learning approaches applied to the same problem including Random Forest, C4.5, SVM and Knn.
|
5 |
MiRNA and co : methodologically exploring the world of small RNAs / MiARN et compagnie : une exploration méthodologique du monde des petits ARNsHigashi, Susan 26 November 2014 (has links)
La principale contribution de cette thèse est le développement d'une méthode fiable, robuste, et rapide pour la prédiction des pré-miARNs. Deux objectifs avaient été assignés : efficacité et flexibilité. L'efficacité a été rendue possible au moyen d'un algorithme quadratique. La flexibilité repose sur deux aspects, la nature des données expérimentales et la position taxonomique de l'organisme (en particulier plantes ou animaux). Mirinho accepte en entrée des séquences de génomes complets mais aussi les très nombreuses séquences résultant d'un séquençage massif de type NGS de “RNAseq”. “L'universalité” taxonomique est obtenu par la possibilité de modifier les contraintes sur les tailles de la tige (double hélice) et de la boule terminale. Dans le cas de la prédiction des miARN de plantes la plus grande longueur de leur pré-miARN conduit à des méthodes d'extraction de la structure secondaire en tige-boule moins précises. Mirinho prend en compte ce problème lui permettant de fournir des structures secondaires de pré-miARN plus semblables à celles de miRBase que les autres méthodes disponibles. Mirinho a été utilisé dans le cadre de deux questions biologiques précises l'une concernant des RNAseq l'autre de l'ADN génomique. La première question a conduit au traitement et l'analyse des données RNAseq de Acyrthosiphon pisum, le puceron du pois. L'objectif était d'identifier les miARN qui sont différentiellement exprimés au cours des quatre stades de développement de cette espèce et sont donc des candidats à la régulation des gènes au cours du développement. Pour cette analyse, nous avons développé un pipeline, appelé MirinhoPipe. La deuxieme question a permis d'aborder les problèmes liés à la prévision et l'analyse des ARN non-codants (ARNnc) dans la bactérie Mycoplasma hyopneumoniae. Alvinho a été développé pour la prédiction de cibles des miRNA autour d'une segmentation d'une séquence numérique et de la détection de la conservation des séquences entre ncRNA utilisant un graphe k-partite. Nous avons finalement abordé un problème lié à la recherche de motifs conservés dans un ensemble de séquences et pouvant ainsi correspondre à des éléments fonctionnels / The main contribution of this thesis is the development of a reliable, robust, and much faster method for the prediction of pre-miRNAs. With this method, we aimed mainly at two goals: efficiency and flexibility. Efficiency was made possible by means of a quadratic algorithm. Flexibility relies on two aspects, the input type and the organism clade. Mirinho can receive as input both a genome sequence and small RNA sequencing (sRNA-seq) data of both animal and plant species. To change from one clade to another, it suffices to change the lengths of the stem-arms and of the terminal loop. Concerning the prediction of plant miRNAs, because their pre-miRNAs are longer, the methods for extracting the hairpin secondary structure are not as accurate as for shorter sequences. With Mirinho, we also addressed this problem, which enabled to provide pre-miRNA secondary structures more similar to the ones in miRBase than the other available methods. Mirinho served as the basis to two other issues we addressed. The first issue led to the treatment and analysis of sRNA-seq data of Acyrthosiphon pisum, the pea aphid. The goal was to identify the miRNAs that are expressed during the four developmental stages of this species, allowing further biological conclusions concerning the regulatory system of such an organism. For this analysis, we developed a whole pipeline, called MirinhoPipe, at the end of which Mirinho was aggregated. We then moved on to the second issue, that involved problems related to the prediction and analysis of non-coding RNAs (ncRNAs) in the bacterium Mycoplasma hyopneumoniae. A method, called Alvinho, was thus developed for the prediction of targets in this bacterium, together with a pipeline for the segmentation of a numerical sequence and detection of conservation among ncRNA sequences using a kpartite graph. We finally addressed a problem related to motifs, that is to patterns, that may be composed of one or more parts, that appear conserved in a set of sequences and may correspond to functional elements.
|
Page generated in 0.0412 seconds