• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 122
  • 59
  • 11
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 467
  • 369
  • 194
  • 168
  • 144
  • 103
  • 65
  • 64
  • 61
  • 52
  • 52
  • 49
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Modelling Lateral Stability of Prefabricated Concrete Structures

Lindwall, Caroline, Wester, Jonas January 2016 (has links)
Stability calculations of prefabricated concrete structures with help of FEM-tools demand knowledge about how the elements are related to each other. This thesis concerns how joints between building elements affect the results when modelling prefabricated concrete structures, with demarcation to joints between hollow core (HC) slabs and between solid wall elements. The thesis also covers how the properties of the floor can be adjusted to account for the effects of the joints without modelling every single element. The work started by measuring the deflection of 10 HC-slabs jointed together and loaded in-plane acting as a deep beam, in a FE-model made with Robot™, from Autodesk®. The joints between the HC-elements were modelled either rigid or elastic, and the cross-section and the length of the HC-elements were varied. The linear elastic stiffness between the HC-elements was obtained from the literature as 0.05 (GN/m)/m. The results showed that a changed cross-section geometry gave greater differences in deformation than a changed length. The in-plane shear modulus was then adjusted for the HC-elements in the rigid cases until the same deflection was achieved as for the elastic cases. The result showed that the shear modulus in average for the different cross-section geometries and lengths had to be reduced with a factor of 0.1 to account for the joints. Based on the geometry of a castellated joint between prefabricated solid concrete walls, a calculation model was developed for its linear elastic stiffness. The result was a stiffness of 1.86 (GN/m)/m. To verify the calculated stiffness, a FE-model was developed consisting of a 30m high wall, loaded horizontally in-plane and with one or two vertical joints where the stiffness was applied. The deflection and the reaction forces were noted and the result from the calculated stiffness was compared to other stiffnesses and assessed reasonable. The reaction forces were shown to depend on the stiffness of the joint. The reduced in-plane shear modulus of the HC-elements and the calculated stiffness of the wall joints were then used in a FE-model of a 10-storey building stabilised by two units. The vertical reaction forces were analysed and the results showed 0.02 % difference in the reaction forces in the stabilising units when consideration of the joints between the HC-elements were taken into account and 0.09 % when the vertical joints in the shear wall were taken into account. The results for the wall joint differed from the results when only the wall was modelled. This was thought to be a result of that the floors counteract the shear deformations in the wall joints. The influence of the floor joints was not significant for the building considered in this thesis, but for buildings with non-continuous configuration of the stiffness in the shear walls the outcome may be another, in these cases the reduction factor may be useful. / Vid stabilitetsberäkningar av prefabricerade betongstommar med hjälp av FEM-verktyg ställs krav på kunskap om hur elementen förhåller sig till varandra. Detta arbete berör hur fogar mellan byggnadselement påverkar modellering av prefabricerade betongstommar med avgränsning till fogar mellan håldäckselement och mellan solida väggelement. Arbetet berör även en studie i hur ett bjälklags egenskaper kan justeras så att fogarnas effekt kan tillvaratas utan att modellera varje enskilt håldäckselement. Arbetet inleddes med att utböjningen analyserades hos 10 st ihopskarvade håldäckselement, lastade i dess plan likt en hög balk, i en FE-modell skapad i programmet Robot™, från Autodesk®. Fogarna mellan håldäcken modellerades som antingen rigida eller elastiska och håldäckens tvärsnittsgeometri och längd varierades under testet. Den linjära styvheten mellan håldäcken togs från litteraturen som 0.05 (GN/m)/m. Resultatet visade att ändrad tvärsnittsgeometri gav större skillnader för deformationen än varierad längd på håldäcken. Håldäckens skjuvmodul justerades sedan i dess plan för de rigida testen tills dess att de uppnådde samma utböjning som de elastiska. Resultatet visade att skjuvmodulen behövdes reduceras med en faktor 0.1, i medeltal för de olika tvärsnittsgeometrierna och håldäckslängderna. Utefter geometrin på en fog med förtagningar mellan prefabricerade väggar togs en beräkningsmodell fram för den linjärelastiska styvheten i väggfogarna. Resultatet blev en styvhet på 1.86 (GN/m)/m. För att verifiera den beräknade styvheten togs en FE-modell fram bestående av en 30m hög vägg lastad horisontellt i dess plan med en eller två vertikala fogar där en linjär styvhet applicerades. Utböjningen samt reaktionskrafterna noterades, resultatet för den uträknade linjära styvheten jämfördes med andra styvheter och bedömdes utifrån detta vara rimlig. Reaktionskrafterna visade sig vara beroende av styvheten på fogen. Den sänkta skjuvmodulen för håldäcken och den beräknade linjära elasticiteten för väggarna användes sedan i en FE-modell av en 10-våningsbyggnad med två stabiliserande enheter där de vertikala reaktionskrafterna analyserades. Resultatet visade att endast 0.02 procentenheter skiljer reaktionskrafterna i de stabiliserande enheterna då hänsyn tas till fogarna mellan håldäcken och 0.09 procentenheter då hänsyn tas till fogarna mellan väggarna. Resultatet skiljer sig från när endast väggen modellerades, vilket tros bero på att bjälklaget hjälper till att motverka deformationer i väggfogarna. Fogen mellan bjälklagselementen tros kunna ha större inverkan på en byggnad med stabiliserande enheter som drastiskt ändrar styvhet från ett plan till ett annat, i dessa fall kan den framtagna reduktionsfaktorn vara av nytta.
82

A cost study of an American precast panel system.

Moghadam, Hamid Reza. January 1978 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Civil Engineering, 1978 / Bibliography: p. 195-199. / M.S. / M.S. Massachusetts Institute of Technology, Department of Civil Engineering
83

Effects of Single Panel Replacement of a Full-Scale, Full-Depth, Precast Concrete Bridge Deck System

Perry, Jason Robert 01 August 2012 (has links)
The use of precast concrete deck panels is becoming increasingly popular for bridge construction and rehabilitation in the state of Utah and across the country. It allows for the use of full depth concrete deck panels but removes the long construction times of traditional cast-in-place methods. One of the challenges to the use of precast deck panels is the transverse deck panel joints that exist between the panels. These joints are unreinforced using traditional methods and therefore are the weakest section of the bridge. In many situations the joint will fail and water seeps through and can damage the bridge superstructure. Post-tensioning of precast decks has become the standard. The post-tensioning provides reinforcing through the joints, reducing the cracking that occurs. Additionally, the post-tensioning provides pressure along the joint and closes cracks that have occurred, therefore preventing water from leaking through to the superstructure and damaging it. The Utah Department of Transportation uses post-tensioning cables that run along the length of the bridge deck, applying pressure on the joints. One of the problems with using this method is it does not allow for the replacement of a single deck panel should the need arise. Utah State University has been researching a new post-tensioned connection that would allow for the replacement of a single deck panel. The “curved bolt” connection connects each deck panel to adjacent panels, providing reinforcement and post-tensioning along the joint. Laboratory testing was undertaken to investigate the effects of single panel bridge rehabilitation on the existing deck system.
84

Durability and Seismic Resistance of a 60-Year Old Precast Prestressed Concrete Building Based on Field Inspections and Laboratory Testings / 現地調査と室内実験に基づく築60年のプレキャストプレストレストコンクリート建物の耐久性と耐震性 / # ja-Kana

Nadia, Binti Kamaruddin 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21365号 / 工博第4524号 / 新制||工||1705(附属図書館) / 京都大学大学院工学研究科建築学専攻 / (主査)教授 西山 峰広, 教授 竹脇 出, 教授 河野 広隆 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
85

Effects of Transverse Reinforcement on Composite Steel Beams with Precast Hoow Core Slabs

Lam, Dennis, Nip, T.F. January 2002 (has links)
No / In composite steel beams with precast hollow core slabs, the amount of transverse reinforcement can have a significant effect on the shear and slip capacity of the mechanical shear connectors. The issue of connector ductility becomes especially important when partial shear connection is adopted, as premature failure of the shear connectors would lead to sudden failure of the composite beam. This chapter presents its findings on the effect of transverse reinforcement on connector ductility and proposes design equations. Transverse reinforcement is used to provide ties for the slabs and confined concrete from splitting. The ductility of the shear connector, that is, slip capacity is directly affected by the amount of transverse reinforcement. Design equations presented in this chapter for estimating the shear capacity of the headed shear stud show a good correlation with the push-off test results. For full shear connection design, pre-splitting shear capacity of the headed stud can be used for the composite design, while for partial shear connection design, post-splitting shear capacity of the headed stud should be used. In general, a minimum transverse reinforcement of T16 bars should be used if partial shear connection design is used to ensure a minimum ductility of 6mm slip.
86

Finite element modelling of semi-rigid composite joints with precast hollowcore slabs

Lam, Dennis, Fu, F., Ye, J. January 2006 (has links)
No / This paper described the finite element modelling of the semi-rigid composite beam-column joints with the composite steel beams and precast hollowcore slabs which can accurately simulate the moment-rotation response of the connections. Using the general purpose finite element software ABAQUS, a three dimensional model of the composite joint is set up. The techniques of simulating the bolt force, the endplate, the concrete elements, the reinforcement, the shear connectors and the interaction between the slabs and the steel beams are discussed. The results are presented and compared with the experimental data and good agreement is obtained. Parametric studies using the developed model will be performed to gain better understanding of this form of composite joints.
87

Experimental Study of Long Span Composite Beams with Precast Hollow-Core Slabs

Murad, A., Lam, Dennis January 2005 (has links)
No
88

Composite Joints with Steel Beams and Precast Hollowcore Slabs

Lam, Dennis January 2007 (has links)
No
89

Parametric study of semi-rigid composite joint with precast hollowcore slabs

Lam, Dennis, Ye, J., Fu, F. January 2007 (has links)
No
90

CONSTRUCTABILITY ISSUES FOR CONNECTION BETWEEN SIMPLE SPAN PRECAST CONCRETE GIRDERS MADE CONTINUOUS

SHAH, RONAK YOGESHCHANDRA 11 October 2001 (has links)
No description available.

Page generated in 0.0279 seconds