• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Adaptive Robust Estimations for High-Dimensional Standardized Transelliptical Latent Networks

Wu, Tzu-Chun 24 May 2022 (has links)
No description available.
2

Quelques contributions à l'estimation de grandes matrices de précision / Some contributions to large precision matrix estimation

Balmand, Samuel 27 June 2016 (has links)
Sous l'hypothèse gaussienne, la relation entre indépendance conditionnelle et parcimonie permet de justifier la construction d'estimateurs de l'inverse de la matrice de covariance -- également appelée matrice de précision -- à partir d'approches régularisées. Cette thèse, motivée à l'origine par la problématique de classification d'images, vise à développer une méthode d'estimation de la matrice de précision en grande dimension, lorsque le nombre $n$ d'observations est petit devant la dimension $p$ du modèle. Notre approche repose essentiellement sur les liens qu'entretiennent la matrice de précision et le modèle de régression linéaire. Elle consiste à estimer la matrice de précision en deux temps. Les éléments non diagonaux sont tout d'abord estimés en considérant $p$ problèmes de minimisation du type racine carrée des moindres carrés pénalisés par la norme $ell_1$.Les éléments diagonaux sont ensuite obtenus à partir du résultat de l'étape précédente, par analyse résiduelle ou maximum de vraisemblance. Nous comparons ces différents estimateurs des termes diagonaux en fonction de leur risque d'estimation. De plus, nous proposons un nouvel estimateur, conçu de sorte à tenir compte de la possible contamination des données par des {em outliers}, grâce à l'ajout d'un terme de régularisation en norme mixte $ell_2/ell_1$. L'analyse non-asymptotique de la convergence de notre estimateur souligne la pertinence de notre méthode / Under the Gaussian assumption, the relationship between conditional independence and sparsity allows to justify the construction of estimators of the inverse of the covariance matrix -- also called precision matrix -- from regularized approaches. This thesis, originally motivated by the problem of image classification, aims at developing a method to estimate the precision matrix in high dimension, that is when the sample size $n$ is small compared to the dimension $p$ of the model. Our approach relies basically on the connection of the precision matrix to the linear regression model. It consists of estimating the precision matrix in two steps. The off-diagonal elements are first estimated by solving $p$ minimization problems of the type $ell_1$-penalized square-root of least-squares. The diagonal entries are then obtained from the result of the previous step, by residual analysis of likelihood maximization. This various estimators of the diagonal entries are compared in terms of estimation risk. Moreover, we propose a new estimator, designed to consider the possible contamination of data by outliers, thanks to the addition of a $ell_2/ell_1$ mixed norm regularization term. The nonasymptotic analysis of the consistency of our estimator points out the relevance of our method
3

Addressing Challenges in Graphical Models: MAP estimation, Evidence, Non-Normality, and Subject-Specific Inference

Sagar K N Ksheera (15295831) 17 April 2023 (has links)
<p>Graphs are a natural choice for understanding the associations between variables, and assuming a probabilistic embedding for the graph structure leads to a variety of graphical models that enable us to understand these associations even further. In the realm of high-dimensional data, where the number of associations between interacting variables is far greater than the available number of data points, the goal is to infer a sparse graph. In this thesis, we make contributions in the domain of Bayesian graphical models, where our prior belief on the graph structure, encoded via uncertainty on the model parameters, enables the estimation of sparse graphs.</p> <p><br></p> <p>We begin with the Gaussian Graphical Model (GGM) in Chapter 2, one of the simplest and most famous graphical models, where the joint distribution of interacting variables is assumed to be Gaussian. In GGMs, the conditional independence among variables is encoded in the inverse of the covariance matrix, also known as the precision matrix. Under a Bayesian framework, we propose a novel prior--penalty dual called the `graphical horseshoe-like' prior and penalty, to estimate precision matrix. We also establish the posterior convergence of the precision matrix estimate and the frequentist consistency of the maximum a posteriori (MAP) estimator.</p> <p><br></p> <p>In Chapter 3, we develop a general framework based on local linear approximation for MAP estimation of the precision matrix in GGMs. This general framework holds true for any graphical prior, where the element-wise priors can be written as a Laplace scale mixture. As an application of the framework, we perform MAP estimation of the precision matrix under the graphical horseshoe penalty.</p> <p><br></p> <p>In Chapter 4, we focus on graphical models where the joint distribution of interacting variables cannot be assumed Gaussian. Motivated by the quantile graphical models, where the Gaussian likelihood assumption is relaxed, we draw inspiration from the domain of precision medicine, where personalized inference is crucial to tailor individual-specific treatment plans. With an aim to infer Directed Acyclic Graphs (DAGs), we propose a novel quantile DAG learning framework, where the DAGs depend on individual-specific covariates, making personalized inference possible. We demonstrate the potential of this framework in the regime of precision medicine by applying it to infer protein-protein interaction networks in Lung adenocarcinoma and Lung squamous cell carcinoma.</p> <p><br></p> <p>Finally, we conclude this thesis in Chapter 5, by developing a novel framework to compute the marginal likelihood in a GGM, addressing a longstanding open problem. Under this framework, we can compute the marginal likelihood for a broad class of priors on the precision matrix, where the element-wise priors on the diagonal entries can be written as gamma or scale mixtures of gamma random variables and those on the off-diagonal terms can be represented as normal or scale mixtures of normal. This result paves new roads for model selection using Bayes factors and tuning of prior hyper-parameters.</p>

Page generated in 0.159 seconds