• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulação de um sistema PET pré-clínico com geometria de detecção variável / Simulation of a Preclinical PET System with Variable Scanner Geometry

Martins, André Augusto de Farias 30 July 2015 (has links)
A medicina nuclear é a área da ciência médica que usa radiofármacos, isto é um radionuclídeo ligado a uma molécula de interesse biomédico, para estudar o funcionamento do organismo. Com isso, essa ciência pode realizar diagnósticos de patologias ou tratamento oncológico. Os estudos pré-clínicos, estudo com pequenos animais, são requisitos de suma importância para o desenvolvimento dessa área. São esses estudos que permitem os testes de novos radiofármacos que possivelmente serão usados em humanos. Quando se trata de pequenos animais, os órgãos de estudo são muito pequenos, portanto é vital que o equipamento tenha uma ótima resolução espacial e boa sensibilidade. Na medicina nuclear, a tomografia por emissão de pósitron (Positron Emission Tomography, PET) tem as características necessárias para desenvolver esses estudos com pequenos animais. Os animais mais usados são ratos e camundongos, e como nem sempre esses animais representam modelo humano seria interessante ter um equipamento que também funcionasse em outros animais. Sendo esse tomógrafo caro, não é viável ter um equipamento para cada tipo de animal. O presente trabalho propõe justamente um único tomógrafo que possa ser usado em diferentes animais ou eventualmente em dois animais simultaneamente. Isso será alcançado variando o anel de detecção usado nesse tipo de tomógrafos. Isso é alcançado mais facilmente em geometrias retangulares, pois com apenas 4 hastes se consegue variar a distância máxima entre os detectores preservando a forma da geometria. O custo envolvido na construção física desse tomógrafo é elevado, consequentemente é interessante ter um teste preliminar que forneça dados que possam sustentar essa ideia. A melhor alternativa para esse teste é o uso de simulação computacional. GATE (Geant4 Application for Tomographic Emission) foi o programa escolhido para essa simulação, porque já é um software validado, isto quer dizer que é compatível com experimentos reais. Assim sendo, quatro simulações foram montadas, duas para geometrias circulares com diâmetros diferentes, e analogamente, duas quadradas. Para verificar qual das geometrias tem melhor performance, foram usados os métodos sugeridos pela norma NEMA NU 4-2008. Efetuados esses testes, pode-se observar que as geometrias quadradas tem resolução semelhante às circulares. A sensibilidade e a relação sinal-ruído são maiores nas geometrias quadradas. Portanto, conclui-se que no geral, as geometrias retangulares simuladas são melhores que as circulares. Esse resultado é motivador para dar início à construção física do tomógrafo, pois o mesmo permite desenvolver novos produtos de modo mais eficiente e com menos custo / Nuclear medicine is an area of medical science that uses radiopharmaceutical (a radionuclide bounded to a molecule of biomedical interest) to study human physiology by images. Thus, this science can perform diagnostics of diseases and eventually, in specific cases, cancer treatment. Before using a new radiopharmaceutical in humans it is necessary to test it in small animals. The organs in these animals are very small, consequently it is vital that the equipment has a great spatial resolution and high sensitivity. In nuclear medicine Positron Emission Tomography (PET) has this requirement. The most animal used to develop this kind of studies are rats and mice. However, they are not always representing human animal model, so equipment that works to other animals also it would be interesting. But it is not feasible to have equipment for each animal, because it will be very expensive. Therefore, the aim of this work is test one scanner that can be used in different animals or possibly in two animals at the same time. This will be achieved by varying the detection ring used in this type of scanners (PET). To do it, it is easier using rectangular geometries because moving only four stalks the distance between the detectors can be varied preserving the shape of the geometry. The cost involved in physical construction of this kind of tomograph is too high, therefore it is interesting have a preliminary test that provides some data which supports this idea. Computer simulation is a cheap alternative for this test and it is able to provide a reliable data. The software used to do the simulations was GATE (Geant4 Application for Tomographic Emission) because it has already validated, what means it is compatible with real experiments. Thus, four simulations were builded, two for circular geometries with different diameters and two for rectangular geometries. To check which kind of geometry has better performance, it used the methods suggested by NEMA NU 4-2008. At end of these tests, it is possible to observe that the spatial resolution in square geometries is similar to circular. The sensitivity and signal to noise ratio are higher in the square geometries. So, in general, it is concluded that the simulated rectangular geometries are better than circular certainly, this result can be motivating to begin physical construction of the scanner, as it allows developing new products more efficiently and with less cost.
2

Simulação de um sistema PET pré-clínico com geometria de detecção variável / Simulation of a Preclinical PET System with Variable Scanner Geometry

André Augusto de Farias Martins 30 July 2015 (has links)
A medicina nuclear é a área da ciência médica que usa radiofármacos, isto é um radionuclídeo ligado a uma molécula de interesse biomédico, para estudar o funcionamento do organismo. Com isso, essa ciência pode realizar diagnósticos de patologias ou tratamento oncológico. Os estudos pré-clínicos, estudo com pequenos animais, são requisitos de suma importância para o desenvolvimento dessa área. São esses estudos que permitem os testes de novos radiofármacos que possivelmente serão usados em humanos. Quando se trata de pequenos animais, os órgãos de estudo são muito pequenos, portanto é vital que o equipamento tenha uma ótima resolução espacial e boa sensibilidade. Na medicina nuclear, a tomografia por emissão de pósitron (Positron Emission Tomography, PET) tem as características necessárias para desenvolver esses estudos com pequenos animais. Os animais mais usados são ratos e camundongos, e como nem sempre esses animais representam modelo humano seria interessante ter um equipamento que também funcionasse em outros animais. Sendo esse tomógrafo caro, não é viável ter um equipamento para cada tipo de animal. O presente trabalho propõe justamente um único tomógrafo que possa ser usado em diferentes animais ou eventualmente em dois animais simultaneamente. Isso será alcançado variando o anel de detecção usado nesse tipo de tomógrafos. Isso é alcançado mais facilmente em geometrias retangulares, pois com apenas 4 hastes se consegue variar a distância máxima entre os detectores preservando a forma da geometria. O custo envolvido na construção física desse tomógrafo é elevado, consequentemente é interessante ter um teste preliminar que forneça dados que possam sustentar essa ideia. A melhor alternativa para esse teste é o uso de simulação computacional. GATE (Geant4 Application for Tomographic Emission) foi o programa escolhido para essa simulação, porque já é um software validado, isto quer dizer que é compatível com experimentos reais. Assim sendo, quatro simulações foram montadas, duas para geometrias circulares com diâmetros diferentes, e analogamente, duas quadradas. Para verificar qual das geometrias tem melhor performance, foram usados os métodos sugeridos pela norma NEMA NU 4-2008. Efetuados esses testes, pode-se observar que as geometrias quadradas tem resolução semelhante às circulares. A sensibilidade e a relação sinal-ruído são maiores nas geometrias quadradas. Portanto, conclui-se que no geral, as geometrias retangulares simuladas são melhores que as circulares. Esse resultado é motivador para dar início à construção física do tomógrafo, pois o mesmo permite desenvolver novos produtos de modo mais eficiente e com menos custo / Nuclear medicine is an area of medical science that uses radiopharmaceutical (a radionuclide bounded to a molecule of biomedical interest) to study human physiology by images. Thus, this science can perform diagnostics of diseases and eventually, in specific cases, cancer treatment. Before using a new radiopharmaceutical in humans it is necessary to test it in small animals. The organs in these animals are very small, consequently it is vital that the equipment has a great spatial resolution and high sensitivity. In nuclear medicine Positron Emission Tomography (PET) has this requirement. The most animal used to develop this kind of studies are rats and mice. However, they are not always representing human animal model, so equipment that works to other animals also it would be interesting. But it is not feasible to have equipment for each animal, because it will be very expensive. Therefore, the aim of this work is test one scanner that can be used in different animals or possibly in two animals at the same time. This will be achieved by varying the detection ring used in this type of scanners (PET). To do it, it is easier using rectangular geometries because moving only four stalks the distance between the detectors can be varied preserving the shape of the geometry. The cost involved in physical construction of this kind of tomograph is too high, therefore it is interesting have a preliminary test that provides some data which supports this idea. Computer simulation is a cheap alternative for this test and it is able to provide a reliable data. The software used to do the simulations was GATE (Geant4 Application for Tomographic Emission) because it has already validated, what means it is compatible with real experiments. Thus, four simulations were builded, two for circular geometries with different diameters and two for rectangular geometries. To check which kind of geometry has better performance, it used the methods suggested by NEMA NU 4-2008. At end of these tests, it is possible to observe that the spatial resolution in square geometries is similar to circular. The sensitivity and signal to noise ratio are higher in the square geometries. So, in general, it is concluded that the simulated rectangular geometries are better than circular certainly, this result can be motivating to begin physical construction of the scanner, as it allows developing new products more efficiently and with less cost.
3

Design and development of detector modules for a highly compact and portable preclinical PET system

ur-Rehman, Fazal January 2012 (has links)
Preclinical PET systems image animal models of chronic human disease that are used to evaluate new therapeutic strategies for the treatment of cancer and other diseases. Once these animals are out of a controlled environment for PET imaging, they typically can not be taken back as they may have been exposed to outside disease. A highly compact PET system is thus required to be developed that can operate within a bio-safety cabinet inside a barrier facility. We investigated using 100-mm-long LYSO scintillator crystals oriented in the axial direction and read out at both ends by position sensitive photomultiplier tubes (PSPMTs) to construct a compact PET. The optimization of light collection for axial encoding of events was carried out using different reflector materials and surface treatments of 3 × 2 × 100 mm3 and 2 × 2 × 100 mm3 polished crystals. The detector response was examined by irradiating the crystals at discrete positions using an electronically collimated 511 keV photon beam. The ratio of two PSPMT signals was used to find the axial-resolution while their sum was used to determine the energy resolution. We then explored the effects of creating systematic band patterns of surface roughing on 1 to 4 long surfaces of the crystals to modulate light-transport with the goal of further improving axial-resolution. These experimental results were used to benchmark DETECT2000 Monte Carlo simulations for our detector geometry. The axial-positioning calibration was carried out by evaluating a uniform flood-irradiation method and comparing with the collimated-irradiation method using 2 × 2 × 100 mm3 crystal detectors. The best axial-positioning resolution of 3.4 mm was achieved in this study for 2 × 2 × 100 mm3 Teflon-wrapped crystals with banding-patterns on only two opposite surfaces, fulfilling the design criteria of our proposed PET. The benchmarked DETECT2000 models can now be used to predict the performance of a complete detector module design. The calibration methods agreed if the trigger threshold energies were adjusted to give similar single event rates in both PSPMTs for uniform flood-irradiation. The implementation of flood-irradiation method in our complete PET scanner will provide a simple axial-positioning calibration.
4

Design and development of detector modules for a highly compact and portable preclinical PET system

ur-Rehman, Fazal January 2012 (has links)
Preclinical PET systems image animal models of chronic human disease that are used to evaluate new therapeutic strategies for the treatment of cancer and other diseases. Once these animals are out of a controlled environment for PET imaging, they typically can not be taken back as they may have been exposed to outside disease. A highly compact PET system is thus required to be developed that can operate within a bio-safety cabinet inside a barrier facility. We investigated using 100-mm-long LYSO scintillator crystals oriented in the axial direction and read out at both ends by position sensitive photomultiplier tubes (PSPMTs) to construct a compact PET. The optimization of light collection for axial encoding of events was carried out using different reflector materials and surface treatments of 3 × 2 × 100 mm3 and 2 × 2 × 100 mm3 polished crystals. The detector response was examined by irradiating the crystals at discrete positions using an electronically collimated 511 keV photon beam. The ratio of two PSPMT signals was used to find the axial-resolution while their sum was used to determine the energy resolution. We then explored the effects of creating systematic band patterns of surface roughing on 1 to 4 long surfaces of the crystals to modulate light-transport with the goal of further improving axial-resolution. These experimental results were used to benchmark DETECT2000 Monte Carlo simulations for our detector geometry. The axial-positioning calibration was carried out by evaluating a uniform flood-irradiation method and comparing with the collimated-irradiation method using 2 × 2 × 100 mm3 crystal detectors. The best axial-positioning resolution of 3.4 mm was achieved in this study for 2 × 2 × 100 mm3 Teflon-wrapped crystals with banding-patterns on only two opposite surfaces, fulfilling the design criteria of our proposed PET. The benchmarked DETECT2000 models can now be used to predict the performance of a complete detector module design. The calibration methods agreed if the trigger threshold energies were adjusted to give similar single event rates in both PSPMTs for uniform flood-irradiation. The implementation of flood-irradiation method in our complete PET scanner will provide a simple axial-positioning calibration.

Page generated in 0.0752 seconds