Spelling suggestions: "subject:"decompensation"" "subject:"compensation""
1 |
Dynamic Image Precompensation for Improving Visual Performance of Computer Users with Ocular AberrationsHuang, Jian 18 June 2013 (has links)
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers.
In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject.
An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
|
2 |
Radar Waveform Design for Classification and Linearization of Digital-to-Analog ConvertersCapar, Cagatay 01 January 2008 (has links) (PDF)
This thesis work consists of two research projects. The first project presented is on waveform design for car radars. These radars are used to detect other vehicles to avoid collision. In this project, we attempt to find the best waveform that distinguishes large objects from small ones. This helps the radar system reach more reliable decisions. We consider several models of the problem with varying complexity. For each model, we present optimization results calculated under various constraints regarding how the waveform is generated and how the reflected signal is processed. The results show that changing the radar waveform can result in better target classification.
The second project is about digital-to-analog converter (DAC) linearization. Ideally, DACs have a linear input-output relation. In practice, however, this relation is nonlinear which may be harmful for many applications. A more linear input-output relation can be achieved by modifying the input to a DAC. This method, called predistortion, requires a good understanding of how DAC errors contribute to the nonlinearity. Assuming a simple DAC model, we investigate how different error functions lead to different types of nonlinearities through theoretical analyses and supporting computer simulations. We present our results in terms of frequency spectrum calculations. We show that the nonlinearity observed at the output strongly depends on how the error is modeled. These results are helpful in designing a predistorter for linearization.
|
3 |
High Precision waveform precompensation for optimum digital signalingShimoda, Lisa M. January 1992 (has links)
No description available.
|
Page generated in 0.1111 seconds