• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Technology to Improve Competitiveness in Warm and Hot Forging: Increasing Die Life and Material Utilization

Shirgaokar, Manas 14 April 2008 (has links)
No description available.
2

Preform Design For Forging Of Heavy Vehicle Steering Joint

Gulbahar, Sertan 01 January 2004 (has links) (PDF)
In automotive industry, forgings are widely used especially in safety related applications, typically suspension, brake and steering systems. In this study, forging process of a steering joint used in heavy vehicles has been examined. This particular part has a non-planar parting surface and requires a series of operations, which includes fullering, bending and piercing on a forging press. Forging companies generally use trial-and-error methods during the design stage. Also to ensure complete die filling at the final stage, extra material is added to the billet geometry. However, the forging industry is becoming more competitive finding a way to improve the quality of the product while reducing the production costs. For this purpose, a method is proposed for the design of the preform dies to reduce the material wastage, number of applied strokes and production costs. The designed operations were examined by using a commercially available finite volume analysis software. The necessary dies have been manufactured in METU-BILTIR CAD/CAM Center. The designed process has been verified by the experimental work in a forging company. As a result of this study, remarkable reduction in the flash, i.e. waste of material, has been achieved with a reasonable number of forging operations. In addition to forging of the steering joint, forging of a chain bracket, which has bent sections with planar parting surface, has also been observed and analyzed during the study. An intermediate bending stage has been proposed to replace the manual hammering stage and satisfactory results have been observed in simulations.

Page generated in 0.0369 seconds