• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 43
  • 24
  • 20
  • 13
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 231
  • 231
  • 94
  • 74
  • 67
  • 38
  • 35
  • 34
  • 33
  • 27
  • 26
  • 22
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Estudo teórico-experimental da perda de pressão durante a ebulição convectiva de refrigerantes halogenados no interior de microcanais circulares / Experimental and theorical study on pressure drop in microchannels during convective boiling of halogen refrigerants

Silva, Jaqueline Diniz da 27 September 2012 (has links)
A presente dissertação trata de um estudo teórico-experimental sobre a perda de pressão em canais de diâmetro reduzido durante escoamento bifásico de refrigerantes halogenados. Trocadores de calor baseados na ebulição convectiva, em condições de micro-escala são amplamente estudados devido à intensificação da troca de calor proporcionada e a possibilidade de compactação de sistemas de resfriamento. Proporcionam também a redução do inventário de refrigerante e do material utilizado no processo de fabricação do trocador. Porém, o incremento da transferência de calor é acompanhada pelo aumento da perda de pressão, parâmetro também fundamental para o desempenho do sistema. Para o projeto satisfatório e otimizado destes dispositivos são necessários métodos de previsão de transferência de calor e perda de pressão. Entretanto, no caso de canais de diâmetro reduzido, tais ferramentas não encontram-se disponíveis e trocadores de calor baseados em escoamentos bifásicos no interior de canais de diâmetro reduzido vêm sendo desenvolvidos heuristicamente. Desta forma, inicialmente neste estudo, realizou-se uma revisão crítica da literatura envolvendo critérios de transição entre padrões de escoamento, fração de vazio superficial, perda de pressão no interior de canais com diâmetro reduzido durante escoamento bifásico e os principais métodos de estimativa da perda de pressão para macro e micro-escala. Resultados experimentais para perda de pressão levantados neste estudo em condições adiabáticas para os fluidos R245fa e R134a e tubo com 1,1 mm de diâmetro interno foram descritos e comparados aos métodos preditivos encontrados na literatura. Finalmente um novo método da previsão da perda de pressão foi proposto baseado na correlação de Müller-Steinhagen e Heck (1986), ajustando os valores do coeficiente e do expoente com base nos resultados experimentais levantados. / A theorical and experimental study on two-phase pressure drop inside micro-scale channels has been developed. Recently, the study of flow boiling in micro-scale channel have received special attention from academia and industry due to several advantages that they offer such as minimization of fluid inventory, high degree of compactness of the heat exchangers, better performance and the capacity of dissipate extremely high heat fluxes. The significant heat transfer coefficient enhancement provided by micro-scale channels comes together with a huge pressure drop penalty that impacts the efficiency of the overall cooling system. So, accurate predictive methods to evaluate the pressure drop are necessary for the appropriate design of the system and for its optimization. In the present study, firstly, a critical review on studies from literature was performed that covers criteria of transition between micro- and macro-scale flow boiling, void fraction, frictional pressure drop on micro-scale channels and the leading frictional pressure drop predictive methods. Experimental pressure drop results were acquired under adiabatic conditions for R245fa and R134a fluids and internal diameter tube of 1.1 mm. Then, the leading pressure drop predictive methods were compared against the present database. Also a new correlation based on Muller-Steinhagen e Heck (1986) method was proposed in this work by adjusting new empirical constants based on the present database together with previous results obtained by Tibiriçá et al. (2011) for a 2.3 mm ID tube.
32

Estudo teórico-experimental da perda de pressão durante a ebulição convectiva de refrigerantes halogenados no interior de microcanais circulares / Experimental and theorical study on pressure drop in microchannels during convective boiling of halogen refrigerants

Jaqueline Diniz da Silva 27 September 2012 (has links)
A presente dissertação trata de um estudo teórico-experimental sobre a perda de pressão em canais de diâmetro reduzido durante escoamento bifásico de refrigerantes halogenados. Trocadores de calor baseados na ebulição convectiva, em condições de micro-escala são amplamente estudados devido à intensificação da troca de calor proporcionada e a possibilidade de compactação de sistemas de resfriamento. Proporcionam também a redução do inventário de refrigerante e do material utilizado no processo de fabricação do trocador. Porém, o incremento da transferência de calor é acompanhada pelo aumento da perda de pressão, parâmetro também fundamental para o desempenho do sistema. Para o projeto satisfatório e otimizado destes dispositivos são necessários métodos de previsão de transferência de calor e perda de pressão. Entretanto, no caso de canais de diâmetro reduzido, tais ferramentas não encontram-se disponíveis e trocadores de calor baseados em escoamentos bifásicos no interior de canais de diâmetro reduzido vêm sendo desenvolvidos heuristicamente. Desta forma, inicialmente neste estudo, realizou-se uma revisão crítica da literatura envolvendo critérios de transição entre padrões de escoamento, fração de vazio superficial, perda de pressão no interior de canais com diâmetro reduzido durante escoamento bifásico e os principais métodos de estimativa da perda de pressão para macro e micro-escala. Resultados experimentais para perda de pressão levantados neste estudo em condições adiabáticas para os fluidos R245fa e R134a e tubo com 1,1 mm de diâmetro interno foram descritos e comparados aos métodos preditivos encontrados na literatura. Finalmente um novo método da previsão da perda de pressão foi proposto baseado na correlação de Müller-Steinhagen e Heck (1986), ajustando os valores do coeficiente e do expoente com base nos resultados experimentais levantados. / A theorical and experimental study on two-phase pressure drop inside micro-scale channels has been developed. Recently, the study of flow boiling in micro-scale channel have received special attention from academia and industry due to several advantages that they offer such as minimization of fluid inventory, high degree of compactness of the heat exchangers, better performance and the capacity of dissipate extremely high heat fluxes. The significant heat transfer coefficient enhancement provided by micro-scale channels comes together with a huge pressure drop penalty that impacts the efficiency of the overall cooling system. So, accurate predictive methods to evaluate the pressure drop are necessary for the appropriate design of the system and for its optimization. In the present study, firstly, a critical review on studies from literature was performed that covers criteria of transition between micro- and macro-scale flow boiling, void fraction, frictional pressure drop on micro-scale channels and the leading frictional pressure drop predictive methods. Experimental pressure drop results were acquired under adiabatic conditions for R245fa and R134a fluids and internal diameter tube of 1.1 mm. Then, the leading pressure drop predictive methods were compared against the present database. Also a new correlation based on Muller-Steinhagen e Heck (1986) method was proposed in this work by adjusting new empirical constants based on the present database together with previous results obtained by Tibiriçá et al. (2011) for a 2.3 mm ID tube.
33

Establishing a facility to measure packed column hydrodynamics

Lamprecht, Sarel Marais 12 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Distillation continues to be the most widely used method of separation in the processing industry, in spite of its inherently low thermodynamic efficiency. Two of the critical distillation research needs that arose from the US-Initiative Vision 2020 were to develop a better understanding of the physical phenomena as well as developing better predictive models. Also, characterisation of modern packing materials is required to assist in the CO2 capture optimisation. This thesis deals with both these aspects by establishing a facility that can accurately measure the hydraulic capacity of packed columns. This setup eliminates mass transfer and specific attention can be given to the hydrodynamic behaviour of packed columns. Two phenomena that have a large impact on the mass transfer efficiency of packing materials are the loading and flooding point. The loading point is signified by the following: a.) where the packed column hold-up increases, b.) higher increase in pressure drop, and c.) a decrease in Height Equivalent to a Theoretical Plate (HETP). The onset of flooding is where the shear forces between the gas and liquid become so large (relative to the gravitational forces) that a net upwards movement of liquid occurs, resulting in liquid droplets being heavily entrained. This is normally accompanied by a sharp increase in HETP, pressure drop and liquid hold-up. The prediction of these operating limits is of great value but, despite the many contributions that were made from 1960 to 2010, there is still room for improvement. The operating region of particular interest is between the loading and flooding point, especially for fluids with physical properties significantly different from that of water. In the past, this operating region was not of great importance, but industries are constantly striving to increase their production with minimal capital expenditure. Thus, packed columns are being pushed to their limits and a good understanding of the phenomena occurring near these operational limits is now required. A 400 mm diameter glass packed bed setup (with a bed height of 3000 mm) was designed and constructed to test the effect of the following parameters on packed bed pressure drop and liquid hold-up: · Gas and liquid physical properties · Gas and liquid rates · Type of packing (either random or structured) The experimental setup has been designed so that in the future the influences of the above mentioned parameters on entrainment can also be measured. Initially, hydrodynamic tests on random packing materials (1.5” Pall® Rings, 1.5” IMTP®, 1.5” Intalox® Ultra™) were conducted over a liquid range of 6 - 122 m3/(m2·h). Through a thorough literature study it was found that the most likely semi-theoretical model, that would be able to predict the pressure drop and the liquid hold-up over most of the random packing test range, was the model developed by Billet [1991; 1993; 1995; 1999]. The other models found throughout the literature had at least one of the following deficiencies: · Limited to only the pre-loading region. · Tested (and thus applicable) only over a very select group of packing materials with no attempt to generalise. · Lacked the proper validation of significantly variable fluid properties over multitudes of liquid and gas rates especially, at higher gas and liquid rates. The experimental setup was successfully commissioned, noting the following maximum experimental errors: Vapour flow factor - 2.6 %; liquid rate - 0.75 %; packed bed pressure drop - 0.75 %; liquid hold-up - 1.25 % and entrainment - 1.05 %. Significant deviations were observed between the experimental hold-up and the hold-up from the predictive model of Billet (using Pall® Rings). Careful inspection revealed that this predictive model potentially uses two definitions for hold-up at flooding, one which has a theoretical basis and the other purely empirical. Upon substituting the theoretical value with the empirical value, a significant improvement was observed between the measured and predicted results. Deviations were still observed near the flooding point and were attributed to the difficulty of obtaining reliable flooding data. The range of liquid hold-up prediction by Billet was only verified up to a liquid rate of 82 m3/(m2·h) and the pressure drop prediction only verified up to a liquid rate of 60 m3/(m2·h). This reinforces the need for high liquid, high gas rate data. Due to the empirical nature of the liquid hold-up at flooding prediction, and since pressure drop prediction is directly linked to liquid hold-up, another model was used to compare the experimental pressure drop data. The KG-TOWER® simulator was used to predict IMTP® data and compare it to the experimentally measured values. It was found that the experimental IMTP® data followed the same trends as those from KG-TOWER® within the operating limits of the program. Thus, since the experimental data follows similar trends as models found in the literature, as well as falling within their reliable limits, the experimental setup can correctly measure the parameters in question. The experimental data from the different random packings were compared to one another by using a statistical method to determine the loading point and onset of flooding. This method uses prediction confidence intervals by fitting empirical curves to each operating region and was found to be useful in determining these critical points from experimental hydraulic data (in the absence of HETP data).The only useful comparison was between IMTP® and Intalox® Ultra™ as they both have roughly the same density, size and void fraction. It was found that, on average, the pressure drop of Intalox® Ultra™ is 20 % lower than that of IMTP® over the entire operating range. The hydraulic operating range of Intalox® Ultra™ was found to be on average 16 % larger than that of IMTP®. It is recommended that further testing should be done to investigate the influence of fluid properties (specifically liquid viscosity and to a lesser extent surface tension) on the hydraulic capacity of packed columns. Also, high gas and high liquid rate data should be generated to assist current modelling techniques. Lastly, a comparative characterisation between Intalox® Ultra™ and Raschig Super-Rings would serve as a benchmark for fourth generation random packings. / AFRIKAANSE OPSOMMING: Distillasie is vandag nog die skeidingsproses wat die meeste gebruik word in the prosesnywerhede ten spyte van ‘n lae termodinamiese effektiwiteit. Twee van die kritieke distillasie navorsing behoeftes wat vanuit die US-Initiative Vision 2020 ontstaan het, was om die fisiese verskynsels beter te verstaan, asook om beter voorspellende modelle te ontwikkel. Die karakterisering van moderne pakking materiale is ook nodig vir die optimering van die verwydering van CO2 uit uitlaatstrome. Hierdie tesis spreek beide van hierdie faktore aan deur ‘n fasiliteit op te rig wat die hidrouliese kapasiteit van gepakte kolomme akkuraat kan meet. Hierdie opstelling elimineer massa-oordrag en dus kan spesifieke aandag gegee word aan die hidrodinamiese gedrag van gepakte kolomme. Twee verskynsels wat ‘n groot impak het op die massaoordrag effektiwiteit van pakkingsmateriale is die ladingspunt en die vloedpunt. Die ladingspunt word deur die volgende gekenmerk: a.) waar die vloeistof inhoud in die gepakte bed toeneem, b.) ‘n toename in drukval en c.) ‘n afname in die hoogte ekwivalent aan ‘n teoretiese plaat (HETP). Die vloed gebied word gekenmerk waar die skuifkragte tussen die vloeistof en gas so groot raak (relatief tot die gravitasionele kragte), dat daar ‘n netto opwaartse beweging van vloeistof druppels in die kolom is. Hierdie gaan normaalweg gepaard met ‘n skerp toename in HETP, drukval en vloeistof inhoud. Die voorspelling van hierdie bedryfslimiete is baie waardevol, maar ten spyte van die bydrae wat tussen 1960 en 2010 gemaak was, is daar nog steeds ruimte vir verbetering. Die spesifieke bedryfsgebied van belang is die gebied tussen die ladingspunt en die vloedpunt en spesifiek vir sisteme waar die fisiese eienskappe van die vloeistowwe drasties verskil van die van water. In die verlede was hierdie gebied van minder belang gewees, maar maatskappye probeer deesdae hul produksie opstoot met minimale kapitale uitleg. Dus is ‘n goeie kennis van massa-oordrag verskynsels naby aan die bedryfslimiete van kardinale belang. ‘n 400 mm Diameter gepakte kolom (met ‘n bed hoogte van 3000 mm en bestaande uit glas) opstelling is ontwerp en gebou om die effek van die volgende parameters te toets op gepakte bed drukval en vloeistof inhoud: · Gas en vloeistof fisiese eienskappe · Gas vloeistof vloeitempos · Tipe pakking (beide ongeordend en gestruktureerd) Die eksperimentele opstelling is ontwerp om die bogenoemde eienskappe op vloeistofmeesleuring te meet vir toekomstige navorsing. Hidrodinamiese toetse op ongeordende pakkingsmateriale (1.5” Pall® Ringe, 1.5” IMTP®, 1.5” Intalox® Ultra™) is uitgevoer vir vloeistof vloeitempos tussen 6 en 122 m3/(m2·h). Vanuit ‘n deeglike literatuurstudie is daar gevind dat die mees toepaslike semi-teoretiese model, wat die drukval sowel as die vloeistof inhoud kan voorspel oor al die bedryfsgebiede, is die model wat deur Billet [1991; 1993; 1995; 1999] ontwikkel is. Die ander modelle in die literatuur het ten minste een van die volgende tekortkominge gehad: · Is slegs van toepassing in die voor-ladings gebied. · Is slegs van toepassing vir ‘n paar pakkingsmateriale en geen poging is aangewend om dit te veralgemeen nie. · Is nie geldig waar die vloeistof eienskappe drasties verskil van ‘n lug/water sisteem nie, sowel as by hoë gas en vloeistof vloeitempos. Die eksperimentele opstelling is suksesvol in werking gestel met die volgende waargenome eksperimentele foute: Gas vloei faktor – 2.6 %; vloeistof vloeitempo – 0.75 %; gepakte bed drukval – 0.75 %; vloeistof inhoud – 1.25 %; vloeistof-meesleuring tempo – 1.05 %. Noemenswaardige verskille is waargeneem tussen die eksperimentele en teoretiese vloeistof inhoud (deur Pall® Ringe te gebruik). Na gelang van noukeurige inspeksie, is daar gevind dat die Billet-model twee moontlike definisies voorstel vir die voorspelling van vloeistofinhoud by die vloedpunt. Een van hierdie is teoreties van aard en die ander een suiwer empiries. ‘n Vervanging van die teoretiese waardes met die empiriese waardes het gelei tot ‘n merkwaardige verbetering tussen die eksperimentele en teoretiese voorspellings. Daar was nog steeds verskille naby aan die vloedpunt, maar dit kon toegeskryf word aan die feit dat min betroubare data naby aan die vloedpunt beskikbaar is. Die voorspelling van vloeistof inhoud deur Billet is slegs gekontroleer tot ‘n vloeistof vloeitempo van 82 m3/(m2·h) en die drukval slegs tot ‘n vloeistof vloeitempo van 60 m3/(m2·h). Die bogenoemde bewys dus die tekort aan hoë gas- en hoë vloeistofvloeitempo data. Die voorspellende model se drukval is gekoppel aan die vloeistof inhoud, en dus is ‘n ander model gebruik om die eksperimentele drukval data teen te vergelyk. Die KG-TOWER® simulasie program is gebruik om die IMTP® drukval te voorspel en dit het goed vergelyk met die eksperimentele data. Dus, aangesien die eksperimentele data dieselfde tendens toon as dié van die modelle in die literatuur en aangesien dit binne die modelle se foutbande val, kan die eksperimentele opstelling die verlangde parameters akkuraat meet. Die eksperimentele data van al drie pakkingsmateriale is teenoor mekaar vergelyk deur gebruik te maak van ‘n statistiese metode wat die ladings- en vloedpunt bepaal. Hierdie metode maak gebruik van voorspellings vertroue intervalle deur empiriese kurwes op die eksperimentele data in elke bedryfsgebied te pas. Hierdie metode is ontwikkel om toepaslike te wees in die afwesigheid van HETP data. Die enigste nuttige vergelyking is tussen IMTP® en Intalox® Ultra™ omdat albei dieselfde pakkingsdigtheid, grootte en pakkings oop ruimte het. Daar is gevind dat die drukval van Intalox® Ultra™ ‘n gemiddeld van 20 % laer is as dié van IMTP® oor die hele bedryfsgebied. Die hidrouliese bedryfsgebied van Intalox® Ultra™ is 16 % groter as dié van IMTP®. Daar word voorgestel dat bykomende toetswerk gedoen moet word om die invloed van vloeistof eienskappe (spesifiek vloeistof viskositeit en vloeistof oppervlak spanning) op die hidrouliese kapasiteit van gepakte kolomme te ondersoek. Bykomende toestwerk by hoë gas- en hoë vloeistofvloeitempo word benodig om die bestaande modelle aan te vul. Laastens, sal ‘n vergelykende studie tussen Intalox® Ultra™ en Raschig Super-Rings die grondslag lewer vir die karakterisering van vierde generasie ongeordende pakkingsmateriale.
34

Comparative analysis of predictive equations for transfer processes in different porous structures

Woudberg, Sonia 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Research on transfer processes in various types of porous media has become important for the optimization of high technology engineering devices and processes. In this study the micro-structural parameters of different types of porous media, namely granular media, foamlike media and fibre beds, are characterized and quantified. Existing analytical modelling procedures for the three different types of porous media have been unified and refined to improve their predictive capabilities. Deterministic equations are proposed for predicting the streamwise pressure gradient, permeability and inertial coefficient of each type of porous medium. The equations are applicable over the entire porosity range and steady laminar flow regime and well suited as drag models in numerical computations. It is shown that the improved granular model can be regarded as qualitative and quantitative proof of the extensively used semi-empirical Ergun equation. The proposed model is used to provide physical meaning to the empirical coefficients. An Ergun-type equation is also proposed for foamlike media by remodelling the interstitial geometric configuration and accompanying flow conditions. The range of applicability of the existing foam model has been extended by incorporating the effect of developing flow in the pressure drop prediction. An equation is proposed in which the variation in the cross-sectional shape of the fibres can be incorporated into the interstitial form drag coefficient used in the foam model. This serves as an improvement on the constant value previously used. The existing foam model is also adapted to account for anisotropy resulting from compression. Two case studies are considered, namely compression of a non-woven glass fibre filter and compression of a soft polyester fibre material. The significant effect of compression on permeability is illustrated. In each case study the permeability values range over more than an order of magnitude for the narrow porosity ranges involved. The pressure drop prediction of the foam model is furthermore adapted to account for the combined effects of compression and developing flow. The newly proposed model diminishes the significant over-prediction of the existing foam model. An equation is furthermore proposed for predicting the permeability of Fontainebleau sandstones in which the effect of blocked throats is accounted for. Lastly, equations are proposed for predicting diffusivity ratios of unconsolidated arrays of squares and cubes. The prediction of the diffusivity ratio proposed in the present study, as opposed to model predictions from the literature, takes into account diffusion that may take place in stagnant fluid volumes. It is shown that a specific weighted average model proposed in the literature is not adequate to predict the diffusivity ratio of fully staggered arrays of squares, since it is shown not to be applicable to rectangular unit cells. Instead a new weighted average model is proposed which is applicable over the entire porosity range and for both staggered and non-staggered arrays of solid squares and cubes. The proposed weighted average model provides satisfactory agreement with experimental data from the literature and numerical data generated in the present study. / AFRIKAANSE OPSOMMING: Navorsing op oordragsprosesse in verskeie tipes poreuse media het belangrik geword vir die optimisering van ho¨e-tegnologie ingenieurstoestelle- en prosesse. In hierdie studie word die mikro-struktuur parameters van verskillende tipes poreuse media, naamklik korrelagtige media, sponsatige media en veselbeddens gekarakteriseer en gekwantifiseer. Bestaande analitiese modelleringsprosedures vir die drie verskillende tipes poreuse media is verenig en verfyn om die voorspelbare bekwaamheid daarvan te verbeter. Deterministiese vergelykings is voorgestel vir die voorspelling van die stroomsgewyse gradi¨ent, permeabiliteit en inersi¨ele ko¨effisi¨ent van elke tipe poreuse medium. Die vergelykings is geldig oor die hele porositeitsgrens en gestadigde laminˆere vloeigrens en goed geskik as weerstandsmodelle in numeriese berekeninge. Dit is aangetoon dat die verbeterde korrelmodel beskou kan word as kwalitatiewe en kwantitatiewe bewys van die ekstensiewe gebruikte semi-empiriese Ergun vergelyking. Die voorgestelde model is gebruik om fisiese betekenis aan die empiriese ko¨effisi¨ente te gee. ’n Ergun-tipe vergelyking is ook voorgestel vir sponsagtige media deur hermodellering van die tussenruimtelike geometriese konfigurasie en gepaardgaande vloeikondisies. Die grense van toepaslikheid van die bestaande sponsmodel is uitgebrei deur die inkorporering van die effek van ontwikkelende vloei in die voorspelling van die drukval. ’n Vergelyking is voorgestel waarin die variasie in die deursnit vorm van die vesels ingesluit is in die sponsmodel. Dit dien as verbetering op die konstante waarde wat voorheen gebruik is. Die bestaande sponsmodel is ook aangepas om voorsiening te maak vir anisotropie as gevolg van kompressie. Twee gevallestudies is oorweeg, naamlik kompressie van ’n nie-geweefde glasvesel filter en kompressie van ’n sagte polyester veselmateriaal. Die beduidende effek van kompressie op permeabiliteit is aangetoon. In elke gevallestudie strek die permeabiliteit waardes oor meer as ’n grootte orde vir die skrale porositeitgrense betrokke. Die drukvalvoorspelling van die sponsmodel is verder aangepas om voorsiening te maak vir die gekombineerde effekte van kompressie en ontwikkelende vloei. Die nuwe voorgestelde model verminder die beduidende oor-voorspelling van die bestaande sponsmodel. ’n Vergelyking is verder voorgestel vir die voorspelling van die permeabiliteit van Fontainebleau sandsteen waarin die effek van geblokte porie¨e in ag geneem is. Laastens is vergelykings voorgestel vir die voorspelling van die diffusiwiteitsverhoudings van nie-konsoliderende rangskikkings van vierkante en kubusse. Die diffusiwiteitsverhouding voorspel in die huidige studie, teenoor modelvoorspellings vanaf die literatuur, neem diffusie in ag wat plaasvind in die stagnante vloeistofvolumes. Dit is aangetoon dat ’n geweegde gemiddelde model, voorgestel in die literatuur, nie in staat is om die diffusiwiteitsverhouding van ten volle verspringende rangskikkings van vierkante te voorspel nie, aangesien dit nie toepaslik is vir reghoekige eenheidselle nie. ’n Nuwe geweegde model is in plaas daarvan voorgestel wat toepaslik is oor die hele porositeitsgrens en vir beide verspringende en nieverspringende rangskikkings van soliede vierkante en kubusse. Die voorgestelde geweegde gemiddelde model bied bevredigende ooreenstemming met eksperimentele data uit die literatuur en numeriese data gegenereer in die huidige studie.
35

Bestämning av tryckfallet vid pneumatisk transport av sågspån : Genom simulering och praktiska försök / Determination of pressure drop in a pneumatic conveying of sawdust : Through simulations and practical experiments

Eriksson, Sebastian January 2014 (has links)
Minskad tillgång på fossila material och ökade energibehov i värden skapar ett behov av att utveckla alternativa och miljömässigt hållbara lösningar. Biobränsle har därför växt till en av de viktigaste förnyelsebara energikällorna i målet mot ett koldioxidneutralt samhälle. Dock skapar det obearbetade biobränslet problem, på grund av den höga fuktkvoten, mellan 50-150 %. Som en följd finns ett torkbehov som måste lösas på ett miljö- och energieffektivt sätt. Idag står torkningen av biomaterial innan pelletering för 25 % av den totala kostnaden vid pelletstillverkning. Kostnaden för att torka biomaterialet gör det viktigt att effektivisera torkningen, samtidigt bidrar torkningen till utsläpp av miljöfarliga ämnen såsom terpener. Torkningen måste dessutom ske med jämn kvalitet, så att biomaterialet håller konstant och homogen fukthalt för att möjliggöra effektiv processering. Beroende på vad biomaterialet skall användas till krävs olika torkhalter. Ideal fuktkvot för förbränning är till exempel 15-25 %, medan för pyrolys skall fuktkvoten helst ligga mellan 5-10 % för en effektiv och högkvalitativ process. För pellets skall fuktkvoten idealt ligga mellan de två nämnda processerna, nämligen 8-12 %. Tre vanliga torkartyper för torkning av biomaterial är roterande torktrumma, bandtork och pneumatisk tork. I detta arbete bestäms tryckfallet i en pneumatisk tork. Pneumatisk tork fungerar genom att ett luftflöde transporterar och torkar ett vått material. Fördelarna med en pneumatisk tork är den korta torkningstiden, samtidigt som materialet får en jämn fuktkvot. Den korta torktiden bidrar dessutom med att utsläpp av lättflyktiga organiska föreningar (VOC) såsom terpener är små jämfört med de andra två nämnda torkarna, samt att brandrisken är låg. Kostnaden för pneumatisk torkning är dock högre på grund av det höga gasflödet som krävs jämfört med materialflödet, samt svårigheter med att effektivt separera det torkade materialet från luftflödet. Det skapades en modell som predikterade tryckfallet i en pneumatisk tork, och verifiera det simulerade tryckfallet mot ett praktiskt uppmätt tryckfall på en pneumatisk torkanläggning. På detta sätt skapades en modell som kan undersöka olika material- och luftflöden, och hur de påverkar tryckfallet. Arbetet ger förslag på hur tryckfall och hastigheter kan beräknas dels i regionen för accelerationen av materialflödet, vid stationärt flöde samt i U-böjar. För att anpassas till det praktiskt uppmätta tryckfallet användes därefter ett korrigeringssamband som skapades genom observationer från en kalibrerande körning för den pneumatiska torkanläggningen. Resultaten av modellen stämmer överens med forskning inom pneumatisk transport och torkning. Modellen gav med hjälp av korrigeringssambandet ett mycket bra resultat över hur tryckförlusterna varierar över sträckan i en pneumatisk transport. Tryckfallet var som väntat större för högre material- eller luftflöden. Då sågspånet accelererade till sin maxhastighet på en sträcka mellan 0,4-0,6 meter, beroende på luftflödets hastighet, krävs fler mätpunkter i regionen mellan 0-0,6 meter för att bättre kunna konstatera exakt hur tryckfallet under spånets acceleration sker. Skillnaden mellan det praktiskt uppmätta och det simulerade tryckfallet var aldrig mer än 7,0 % för de flöden som undersökts i detta arbete. Då man bortsåg från mätpunkten vid 0,4 meter var skillnaden mellan uppmätt och simulerat tryckfall aldrig mer än 4,4 %. Om värmeöverföringen mellan materialet och luften tas med i modellen, kan den användas för att prediktera energiåtgång och behövd längd för att uppnå önskad fuktkvot på materialet. / The reduced availability of fossil fuels and the increasing energy demand in the world creates a need to develop solutions that are financial and environment sustainable. Biofuels has grown to become one of the most important renewable energy sources in the target towards a carbon neutral society. Although the high moisture content ranging between 50-150% for unprocessed biofuels causes problems. As a result, there is a drying demand that has to be solved in an energy efficient and environmental friendly way. As of today, the drying of biomaterials pre pelletizing stands for 25 % of the total cost in pellets production. The cost to dry biomaterials makes it important to improve the efficiency of the drying process. Simultaneously the drying process causes emissions of hazardous substances such as terpenes. The drying must also in a consistent quality so that the biomaterial is made to hold constant and uniform moisture content to enable efficient processing. Depending on the usage of the biomaterial, there is a different demand of the final moisture content before processing. The ideal moisture content for combustion for example ranges between 15-25 %, while pyrolysis would rather have moisture content between 5-10 % for effective and high quality processing. The ideal moisture content pre pelletizing is between the two mentioned processes, namely 8-12 %. Three common dryers used to dry biomaterials are rotary dryers, conveyor dryer and pneumatic dryer. In this thesis the pressure drop in a pneumatic dryer is predicted. A pneumatic dryer a airflow simultaneously conveys and dries the wet material. Perks of a pneumatic dryer is the short amount of time required to dry the material, and simultaneously deliver uniform moisture content. The short time required also contributes to minimize the emissions of volatile organic compounds (VOC) like terpenes compared to the other two mentioned types of dryers and the risk of fire during the drying process. Although because of the high airflow compared to the material flow, pneumatic drying is costly and has difficulties with separating the dried material from the airflow. A model to predict the pressure drop in a pneumatic dryer was created. The simulated pressure drop was then verified against a practically measured pressure drop for a pneumatic dryer. In this way a model was created to examine the pressure drop for a variety of material- and airflows. The thesis suggests how to calculate the pressure drop and velocities for the accelerating region, steady state and U-bend of pneumatic conveying. To better predict the pressure drop according to the actually measured pressure drop a correction equation was presented. The results of the model are consistent with the research in pneumatic conveying and drying. The model gave with the usage of the correction equation a very good prediction on how the pressure drop varied over the length of the pneumatic conveying. The pressure drop was as expected larger as the airflow or material flow increased. As the sawdust accelerated on 0,4-0,6 meters there is required more points of measurements in the region between 0-0,6 meters to better establish exactly how the pressure drop in the accelerating region varies. The difference between the practically measured and the simulated pressure drop was never exceeded 7,0 % for the different flows investigated in this thesis. When disregarding the measure point at 0,4 meters the difference between measured and simulated pressure drop never exceeded 4,4 %. If one would include the heat transfer between the material- and airflow, the model could be used to predict the energy consumption and required length to achieve desired moisture content on the material.
36

Advanced Gasification of Biomass/Waste for Substitution of Fossil Fuels in Steel Industry Heat Treatment Furnaces

Gunarathne, Duleeka January 2016 (has links)
With the current trend of CO2 mitigation in process industries, the primary goal of this thesis is to promote biomass as an energy and reduction agent source to substitute fossil sources in the steel industry. The criteria for this substitution are that the steel process retains the same function and the integrated energy efficiency is as high as possible. This work focuses on advanced gasification of biomass and waste for substitution of fossil fuels in steel industry heat treatment furnaces. To achieve this, two approaches are included in this work. The first investigates the gasification performance of pretreated biomass and waste experimentally using thermogravimetric analysis (TGA) and a pilot plant gasifier. The second assesses the integration of the advanced gasification system with a steel heat treatment furnace. First, the pyrolysis and char gasification characteristics of several pretreated biomass and waste types (unpretreated biomass, steam-exploded biomass, and hydrothermal carbonized biomass) were analyzed with TGA. The important aspects of pyrolysis and char gasification of pretreated biomass were identified. Then, with the objective of studying the gasification performance of pretreated biomass, unpretreated biomass pellets (gray pellets), steam-exploded biomass pellets (black pellets), and two types of hydrothermal carbonized biomass pellets (spent grain biocoal and horse manure biocoal) were gasified in a fixed bed updraft gasifier with high-temperature air/steam as the gasifying agent. The gasification performance was analyzed in terms of syngas composition, lower heating value (LHV), gas yield, cold gas efficiency (CGE), tar content and composition, and particle content and size distribution. Moreover, the effects on the reactions occurring in the gasifier were identified with the aid of temperature profiles and gas ratios. Further, the interaction between fuel residence time in the bed (bed height), conversion, conversion rate/specific gasification rate, and superficial velocity (hearth load) was revealed. Due to the effect of bed height on the gasification performance, the bed pressure drop is an important parameter related to the operation of a fixed bed gasifier. Considering the limited studies on this relationship, an available pressure drop prediction correlation for turbulent flow in a bed with cylindrical pellets was extended to a gasifier bed with shrinking cylindrical pellets under any flow condition. Moreover, simplified graphical representations based on the developed correlation, which could be used as an effective guide for selecting a suitable pellet size and designing a grate, were introduced. Then, with the identified positive effects of pretreated biomass on the gasification performance, the possibility of fuel switching in a steel industry heat treatment furnace was evaluated by effective integration with a multi-stage gasification system. The performance was evaluated in terms of gasifier system efficiency, furnace efficiency, and overall system efficiency with various heat integration options. The heat integration performance was identified based on pinch analysis. Finally, the efficiency of the co-production of bio-coke and bio-H2 was analyzed to increase the added value of the whole process. It was found that 1) the steam gasification of pretreated biomass is more beneficial in terms of the energy value of the syngas, 2) diluting the gasifying agent and/or lowering the agent temperature compensates for the ash slagging problem in biocoal gasification, 3) the furnace efficiency can be improved by switching the fuel from natural gas (NG) to syngas, 4) the gasifier system efficiency can be improved by recovering the furnace flue gas heat for the pretreatment, and 5) the co-production of bio-coke and bio-H2 significantly improves the system efficiency. / <p>QC 20160825</p>
37

Thermal analysis and air flow modelling of electrical machines

Chong, Yew Chuan January 2015 (has links)
Thermal analysis is an important topic that can affect the electrical machine performance, reliability, lifetime and efficiency. In order to predict the electrical machine thermal performance accurately, thermal analysis of electrical machines must include fluid flow modelling. One of the technologies which may be used to estimate the flow distribution and pressure losses in throughflow ventilated machines is flow network analysis, but suitable correlations that can be used to estimate the pressure losses in rotor ducts due to fluid shock is not available. The aim of this work is to investigate how the rotation affects the pressure losses in rotor ducts by performing a dimensional analysis. Apart from the additional friction loss due to the effects of rotation, other rotational pressure losses that appear in a rotor-stator system are: duct entrance loss due to fluid shock and combining flow loss at the exit of the rotor-stator gap. These losses are analysed using computational fluid dynamics (CFD) methods. The CFD simulations use the Reynolds-averaged Navier Stokes (RANS) approach. An experimental test rig is built to validate the CFD findings. The investigation showed that the CFD results are consistent with the experimental results and the rotational pressure losses correlate well with the rotation ratio (a dimensionless parameter). It shows that the rotational pressure loss generally increases with the increase in the rotation ratio. At certain operating conditions, the rotational pressure loss can contribute over 50 % of the total system loss. The investigation leads to an original set of correlations for the pressure losses in air ducts in the rotor due to fluid shock which are more suitable to be applied to fluid flow modelling of throughflow ventilated machines. Such correlations provide a significant contribution to the field of thermal modelling of electrical machines. They are incorporated into the air flow modelling tool that has been programmed in Portunus by the present author. The modelling tool can be integrated with the existing thermal modelling method, lumped-parameter thermal network (LPTN) to form a complete analytical thermal-fluid modelling method.
38

Experimental and Computational Investigation of Thermal-Flow Characteristics of Gas Turbine Reverse-Flow Combustor

Wang, Liang 05 August 2010 (has links)
Reverse-flow combustors have been used in heavy land-based gas turbines for many decades. A sheath is typically installed to provide cooling at an expense of large pressure losses, through small jet impingement cooling and strong forced convention channel flow. With the modern advancement in metallurgy and thermal-barrier coating technologies, it may become possible to remove this sheath to recover the pressure losses without melting the combustor chamber. However, without the sheath, the flow inside the dump diffuser may exert nonuniform cooling on the combustion chamber. Therefore, the objective of this project is to investigate the flow pattern, pressure drop, and heat transfer in the dump-diffuser reverse-flow combustor with and without sheath to determine if the sheath could be removed. The investigation was conducted through both experimental and computational simulation. The results show that 3.3% pressure losses could be recovered and the highest wall temperature will increase 18% without the sheath.
39

Conception et caractérisation d'échangeurs-réacteurs à structuration multi-échelle / Design and characterization of exchanger-reactors with multi-scale structuring

Saber, Meryem 28 September 2009 (has links)
La présente thèse s’intéresse à la conception et la caractérisation des procédés microstructurés mettant en œuvre des réseaux de microcanaux de différentes dimensions. L’analyse de tels réseaux multi-échelles, représentatifs d’une parallélisastion de microsystèmes élémentaires, a essentiellement servi à identifier les principaux paramètres géométriques et physiques contrôlant les performances de ces réseaux complexes. On a cherché à quantifier l’influence des paramètres géométriques comme le rapport de résistances hydrodynamiques internes, le nombre de canaux et d’échelles opérant ainsi que leur répartition sur le réseau, sur des critères hydrodynamiques comme la maldistribution du fluide et la perte de charge résistive. Il est révélé qu’en fonction des contraintes imposées, un arrangement optimal des canaux sur un nombre pair d’échelles permet de réduire considérablement la maldistribution interne des flux et les pertes de charge résultantes. L’analyse thermique associée à l’analyse hydrodynamique a montré que les performances thermiques des réseaux sont fortement liées à leurs structurations géométriques internes. En présence de réactions catalytiques consécutives, ces mêmes réseaux enregistrent des déviations du rendement du produit désiré. Ces déviations peuvent être levées par une structuration appropriée du réseau catalytique multi-canal. La même architecture de ces réseaux peut être adaptée pour permettre le déroulement des opérations de mélange et/ou des réactions multi-phasiques. Ainsi, pour ces réseaux complexes, où un nombre élevé de variables imbriquées est considéré, des lignes directrices sont ressorties pour aider à leur conception et dimensionnement / This PhD thesis focuses on the design and the characterization of microstructured processes including microchannel networks of various dimensions. The analysis of such multi-scale networks, representative of elementary microsystems parallelization, is mainly used to identify the main geometrical and physical parameters controlling the network performances. Influence of geometrical parameters, such as the internal hydrodynamic resistances ratio, the number of channels and scales and their arrangement in the network, on hydrodynamic criteria like fluid maldistribution and pressure drop is investigated. It is shown that according to some specific constraints, an optimal arrangement of the channels on an even number of scales, allows to reduce significantly the internal flow maldistribution and the consequential pressure losses. The thermal analysis coupled with the hydrodynamic analysis illustrates that the thermal performances of microchannel networks are strongly affected by their internal geometrical arrangement. Nevertheless, the various mixture points located in the network compensate the fluid maldistribution resulting from a non appropriate geometrical arrangement. When consecutive catalytic reactions are performed inside these networks, deviations of the desired product rate can be recorded. These deviations can be reduced by an optimal catalytic network arrangement. The same architecture of these networks is also adapted to allow multi-phase mixing and /or reactions. Thus, using these complex networks, where several variables are considered, guidelines are derived in order to improve their design and their dimensionless
40

Dimensional analysis based CFD modelling for power transformers

Zhang, Xiang January 2017 (has links)
Reliable thermal modelling approaches are crucial to transformer thermal design and operation. The highest temperature in the winding, usually referred to as the hot-spot temperature, is of the greatest interest because the insulation paper at the hot-spot undergoes the severest thermal ageing, and determines the life expectancy of the transformer insulation. Therefore, the primary objective of transformer thermal design is to control the hot-spot temperature rise over the ambient temperature within certain limit. For liquid-immersed power transformers, the hot-spot temperature rise over the ambient temperature is controlled by the winding geometry, power loss distribution, liquid flow rate and liquid properties. In order to obtain universally applicable thermal modelling results, dimensional analysis is adopted in this PhD thesis to guide computational fluid dynamics (CFD) simulations for disc-type transformer windings in steady state and their experimental verification. The modelling work is split into two parts on oil forced and directed (OD) cooling modes and oil natural (ON) cooling modes. COMSOL software is used for the CFD simulation work For OD cooling modes, volumetric oil flow proportion in each horizontal cooling duct (Pfi) and pressure drop coefficient over the winding (Cpd) are found mainly controlled by the Reynolds number at the winding pass inlet (Re) and the ratio of horizontal duct height to vertical duct width. The correlations for Pfi and Cpd with the dimensionless controlling parameters are derived from CFD parametric sweeps and verified by experimental tests. The effects of different liquid types on the flow distribution and pressure drop are investigated using the correlations derived. Reverse flows at the bottom part of winding passes are shown by both CFD simulations and experimental measurements. The hot-spot factor, H, is interpreted as a dimensionless temperature at the hot-spot and the effects of operational conditions e.g. ambient temperature and loading level on H are analysed. For ON cooling modes, the flow is driven by buoyancy forces and hot-streak dynamics play a vital role in determining fluid flow and temperature distributions. The dimensionless liquid flow and temperature distributions and H are all found to be controlled by Re, Pr and Gr/Re2. An optimal design and operational regime in terms of obtaining the minimum H, is identified from CFD parametric sweeps, where the effects of buoyancy forces are balanced by the effects of inertial forces. Reverse flows are found at the top part of winding passes, opposite to the OD results. The total liquid flow rates of different liquids for the same winding geometry with the same power loss distribution in an ON cooling mode are determined and with these determined total liquid flow rates, the effects of different liquids on fluid flow and temperature distributions are investigated by CFD simulations. The CFD modelling work on disc-type transformer windings in steady state present in this PhD thesis is based on the dimensional analyses on the fluid flow and heat transfer in the windings. Therefore, the results obtained are universally applicable and of the simplest form as well. In addition, the dimensional analyses have provided insight into how the flow and temperature distribution patterns are controlled by the dimensionless controlling parameters, regardless of the transformer operational conditions and the coolant liquid types used.

Page generated in 0.0921 seconds