• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 35
  • 33
  • 25
  • 15
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 442
  • 241
  • 109
  • 66
  • 64
  • 60
  • 46
  • 39
  • 38
  • 37
  • 37
  • 36
  • 35
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Nestling begging in southern grey shrikes

Budden, Amber Elizabeth January 2001 (has links)
No description available.
32

The dynamics of ecological invasions and epidemics

Cruickshank, Isla January 1999 (has links)
The systems of interest in this study are the spread of epidemics and invasions from a small propagule introduced into an arena that was initially devoid of the given species or stage of illness. In reaction-diffusion models, populations are continuous. Populations at low densities have the same growth functions as populations at high densities. In nature, such low densities would signify extinction of a population or of a disease. This property can be removed from reaction-diffusion models by small changes in the formulation so that small populations become extinct. This can be achieved by the use of a threshold density or an Allee effect, so there is negative growth at low densities. Both these alterations were made to the Fisher model, a predator-prey model and a two stage and a three stage epidemic model. A semi-numerical method, termed the Shooting method, was developed to predict the shapes and velocities of these wave fronts. This was found to correctly predict the velocity, the peak density of the invading stage or species and the width of the wave front. It was found that in oscillatory cases of the multi species models, a high threshold can remove the wave train or wake which would normally follow the wave front, so the wave becomes a soliton. The next step is to investigate probable causes of persistence behind the initial wavefront. To do this, discrete time and space versions of the models were formulated so that experiments investigating persistence can be carried out in a two dimensional arena with less computational effort. The formulations were chosen so that at reasonable time and space steps the discrete models show no behaviour different to that of the reaction diffusion model, and so that the Shooting method could also be used to make predictions about these wavefronts. Three mechanisms of persistence are investigated; environmental heterogeneity, long range dispersal and self organised patterns.
33

Evolution and impact of invasive species : cane toads and snakes in Australia

Phillips, Ben Lee January 2004 (has links)
Evolution can occur rapidly, along timescales that are traditionally regarded as 'ecological'. Despite growing acceptance among biologists of rapid evolution, a strong paradigm of contemporary evolution is still absent in many sub-disciplines. Here I apply a contemporary evolution viewpoint to conservation biology. Specifically, I examine the impact of cane toads (Bufo marinus) on Australian snakes. Toads were introduced into Australia in 1935, have spread rapidly and represent a novel, extremely toxic prey item to na�ve Australian predators (including snakes). Based on dietary preferences and geographic distributions I find that 49 species of Australian snake are potentially at risk from the invasion of the toad. Furthermore, examination of physiological resistance to toad toxin in 10 of these �at risk� species strongly suggests that most species of Australian snake are poorly equipped to deal with a likely dose of toad toxin. Even species that are highly resistant to toad toxin (such as the keelback, Tropidonophis mairii) face indirect fitness costs associated with consuming toads. Within a population of snakes however, the impact of toads is unlikely to be random. For example, the examination of several component allometries describing the interaction between snakes and toads revealed that, within a species, smaller snakes are more likely to ingest a fatal dose of toad toxin than are larger snakes. Further consideration of the interaction between snakes and toads suggests that toads will not only be exerting differential impact on snakes based upon morphology, but also exert non-random selection on prey preference and resistance to toad toxin in snake populations. To examine the possibility of a morphological response by snakes to toads, I examined changes in the body size and relative head size of four species of snake as a consequence of time since exposure to toads. Two of the species (green treesnakes and red-bellied blacksnakes) are predicted to face strong impacts from toads. These two species showed an increase in mean body size and a decrease in relative head size as a consequence of time since exposure to toads; both changes in an adaptive direction. In contrast, the other two species (keelbacks and swampsnakes) are predicted to face much lower impact from toads, and these two species showed little or no evidence of morphological change associated with time since exposure to toads. These results indicate an adaptive change in morphology at a rate that is proportional to the predicted level of impact for each species, strongly suggesting an evolved response. Red-bellied blacksnakes (a toad-vulnerable species) were further assessed for evolved responses in prey preference and toxin resistance. Comparisons between toad-exposed and toad-na�ve populations of blacksnakes revealed that snakes from toad-exposed populations exhibited slightly higher resistance to toad toxin and a much-reduced tendency to eat toads, when compared with toad-na�ve snakes. Na�ve snakes exhibited no tendency to learn avoidance of toxic prey, nor were they able to acquire resistance to toxin as a result of several sub-lethal doses, suggesting that the observed differences between populations is evolved rather than acquired. Together, these results strongly suggest that blacksnakes are exhibiting an evolved shift in prey preference and toxin resistance as a consequence of exposure to toads. Thus, it appears that snakes are exhibiting adaptation at multiple traits in response to exposure to toads. Given the high likelihood that these adaptive shifts have an evolved basis, it appears that the impact of toads will decrease with time in many snake populations. But what about toads? Because the outcome of the interaction between a toad and a snake is also mediated by the body size and relative toxicity of toads, it is important to understand how these traits vary in space and time. Exploratory analysis revealed that toads exhibit a decrease in body size and a decrease in relative toxicity as a consequence of time since colonisation, indicating that their impact on native predators decreases with time. Additionally, there appears to be meaningful spatial variation in toad relative toxicity, indicating that some populations of native predators are facing higher impact from toads than others. Overall, these results clearly indicate the importance of assessing the potential for rapid evolutionary response in impacted systems. Doing so may provide evidence that some species are in less trouble than originally thought. Additionally, and as more data accumulate, it may be possible to characterise certain categories of environmental impact by their potential for eliciting adaptive response from �impacted� species. This approach has strong implications for the way conservation priorities are set and the way in which conservation dependent populations are managed.
34

The role of piscivores in a species-rich tropical river

Layman, Craig Anthony 15 November 2004 (has links)
Much of the world's species diversity is located in tropical and sub-tropical ecosystems, and a better understanding of the ecology of these systems is necessary to stem biodiversity loss and assess community- and ecosystem-level responses to anthropogenic impacts. In this dissertation, I endeavored to broaden our understanding of complex ecosystems through research conducted on the Cinaruco River, a floodplain river in Venezuela, with specific emphasis on how a human-induced perturbation, commercial netting activity, may affect food web structure and function. I employed two approaches in this work: (1) comparative analyses based on descriptive food web characteristics, and (2) experimental manipulations within important food web modules. Methodologies included monthly sampling of fish assemblages using a variety of techniques, large-scale field experiments, extensive stomach content and stable isotope analyses. Two themes unite the information presented: (1) substantial spatial and temporal variability in food web structure, and (2) how body-size can be used to generalize species-interactions across this complexity. Spatial variability occurred at various scales, from among small fish assemblages on seemingly homogeneous sand banks, to differences among landscape scale units (e.g. between lagoons and main river channel). Seasonal variability was apparent in predation patterns, with relative prey availability and body size primarily resulting in decreasing prey sizes with falling water levels. Body size was also related to functional outcomes of species interactions, for example, a size-based response of prey fishes to large-bodied piscivore exclusion. This pattern was further substantiated at the landscape-scale, as differences in assemblage structure among netted and un-netted lagoons were largely size-based. Trophic position of fish and body size was not found to be related, likely due to the diversity of prey available to consumers, and may signify that commercial netting activity will not decrease food chain lengths. In sum, by describing human impacts within a food web context, I endeavor to provide predictive power regarding a specific human-induced environmental problem, yet still allowing for generality that will broaden the theoretical foundations and applications of food web ecology.
35

Skillnader i kungsörnens (Aquila chrysaetos) flyttningsmönster beroende på ålder och klimatfaktorer : En studie för skyddet av kungsörn

Görtz, Marina January 2012 (has links)
This study examines the factors that influence the seasonal movements of Golden Eagles (Aquila chrysaetos), and can thus provide important information that helps to improve the protection of the species. There were two main purposes of this study. First, I wanted to analyze the difference between preferences of juvenile and adult Golden Eagles in their choice of southern or northern hibernation areas. Do younger eagles prefer moving longer distance to southern areas of Sweden? Second, I wanted to investigate how the climate influenced the choice of date of migration in the fall. In other words, does an early winter arrival influence the migration date of Golden Eagles? I also investigated if food availability influenced the migration date in combination with winter arrival? For the statistical analyses, 14 years (1998-2011) of data on snow conditions, temperatures, food availability and records on banded eagles from the counties Ångermanland and Västerbotten were used. I found that young eagles preferred to move further south, while adults tended to move much shorter distances or remained in the nesting area during the winter. How early or late in the fall the eagles moved was mainly affected by the first day when the temperature was -10°C or below combined with the first day when the snow depth reached at least 8 cm. Another factor that seemed to affect the date of migration was the amount of food (smaller prey), which influenced the effects of temperature and snow cover. For example, there were instances when good food availability led to eagles deciding to stay longer despite early snowfall. This important knowledge on how climatic factors and food availability influence the migration of Golden eagles can be useful when developing conservation programs for their future protection.
36

The behavioural response of mice to predator odours

Blixt, Torbjörn January 2012 (has links)
The ability to detect and react to a predator odour is crucial for prey species. In the present study 10 mice (Mus musculus) were used to test the behavioural response of mice towards two predator odours (3-methyl-1-butanethiol and 3-mercapto-3-methyl-butan-1-ol) and one fruity odour (n-pentyl acetate). All three odours were tested against a near odourless blank stimulus (diethyl phthalate). The animals were individually placed in a test chamber of two equally sized compartments divided by a vertical Plexiglas wall with a semicircular opening. Their proximity to the odours, placed beneath the floor in petri dishes in each compartment, was measured continuously with stop watches. The mice spent less time in proximity to 3-methyl-1-butanethiol and n-pentyl acetate compared to diethyl phthalate (P<0,05). The mice did not prefer any specific compartment in the test with 3-mercapto-3-methyl-butan-1-ol compared to diethyl phthalate (P>0,05). The avoidance of 3-methyl-1-butanethiol and n-pentyl acetate can be explained either by neophobia, or in the case of 3-methyl-1-butanethiol that it contains sulphur. The lack of behavioural response towards 3-mercapto-3-methyl-butan-1-ol may be due to its loss of intensity over time. From this study it is not certain if mice have an innate fear of predator odours.
37

The role of piscivores in a species-rich tropical river

Layman, Craig Anthony 15 November 2004 (has links)
Much of the world's species diversity is located in tropical and sub-tropical ecosystems, and a better understanding of the ecology of these systems is necessary to stem biodiversity loss and assess community- and ecosystem-level responses to anthropogenic impacts. In this dissertation, I endeavored to broaden our understanding of complex ecosystems through research conducted on the Cinaruco River, a floodplain river in Venezuela, with specific emphasis on how a human-induced perturbation, commercial netting activity, may affect food web structure and function. I employed two approaches in this work: (1) comparative analyses based on descriptive food web characteristics, and (2) experimental manipulations within important food web modules. Methodologies included monthly sampling of fish assemblages using a variety of techniques, large-scale field experiments, extensive stomach content and stable isotope analyses. Two themes unite the information presented: (1) substantial spatial and temporal variability in food web structure, and (2) how body-size can be used to generalize species-interactions across this complexity. Spatial variability occurred at various scales, from among small fish assemblages on seemingly homogeneous sand banks, to differences among landscape scale units (e.g. between lagoons and main river channel). Seasonal variability was apparent in predation patterns, with relative prey availability and body size primarily resulting in decreasing prey sizes with falling water levels. Body size was also related to functional outcomes of species interactions, for example, a size-based response of prey fishes to large-bodied piscivore exclusion. This pattern was further substantiated at the landscape-scale, as differences in assemblage structure among netted and un-netted lagoons were largely size-based. Trophic position of fish and body size was not found to be related, likely due to the diversity of prey available to consumers, and may signify that commercial netting activity will not decrease food chain lengths. In sum, by describing human impacts within a food web context, I endeavor to provide predictive power regarding a specific human-induced environmental problem, yet still allowing for generality that will broaden the theoretical foundations and applications of food web ecology.
38

Foraging patterns of kestrels and shrikes and their relation to an optimal foraging model

Mills, Gregory Scott January 1979 (has links)
No description available.
39

Sensory exploitation in a sit-and-wait predator: Exploring the functions of stabilimenta in the banded garden spider, Argiope trifasciata

CROWE, SUSAN ALLISON 28 September 2009 (has links)
Attracting prey by exploiting a visual sensory bias is a common theme in stationary predators across many taxa, particularly for obligate ambush predators, such as orb-weaving spiders, because they construct complex prey traps. Mimicry of UV-reflecting floral-guides has been suggested as the mechanism behind the tendency for spiders and silk web decorations (stabilimenta) to reflect in the UV, to attract pollinators that they then prey upon. Also, many insects are attracted to UV because it most commonly indicates open sky, or a safe flight path. My study focuses on the prey attraction function of stabilimenta, in Argiope trifasciata in eastern Ontario. Decorated webs were no more likely to contain prey than undecorated webs, but for adult spiders, longer stabilimenta were associated with increased likelihood of prey capture. For both adults and juveniles, larger webs were more likely to contain prey in undecorated webs, but for decorated webs, web size was not a predictor of prey presence. I interpret this as evidence for a trade-off between two alternative prey capture strategies: building a web with a large capture area, or building a small web with a stabilimentum. In further support of this trade-off, smaller webs were more likely to contain a stabilimentum, for both juveniles and adults. My data also suggest that close neighbours compete rather than cooperate with each other. Adult webs were spaced farther apart from each other than juvenile webs, more than would be expected based on web diameter difference. For juveniles, webs with a closer neighbour were more likely to be decorated, implying an increased need for prey attraction in the presence of a nearby competitor. For adults, prey was more likely to be found in webs that were more solitary. My results do not support the hypothesis that visually attractive spiders increased prey capture by aggregating. / Thesis (Master, Biology) -- Queen's University, 2009-09-28 10:57:18.156
40

The abiotic environment and predator-prey interactions: direct and indirect effects within aquatic environments with a specific look at temperature

Pink, Melissa 19 January 2011 (has links)
Species have specific tolerances to a variety of environmental variables including temperature, dissolved oxygen (DO) and turbidity. Changes in either of these variables can therefore be expected to affect predator-prey interactions in shallow water ecosystems. Temperature drives the metabolic rates of poikilotherms, including fish. Hypoxic conditions generally affect larger fishes to a greater degree than smaller fishes, though the presence of physostomous swim bladders in certain species can alter that relationship. Finally there are species of fish that rely on vision for food acquisition while other species rely on other senses such as chemical cues. Changes in turbidity levels could therefore affect foraging efficiency of visual foragers. This thesis examines the role that each of these environmental variables (temperature, DO and turbidity) can have on community composition and therefore predator prey interactions, with a specific focus on the role of temperature in structuring predator-prey interactions. Laboratory, field and theoretical studies suggest that as temperature increases, encounter rates between predators and prey will increase. Prey are more active, spend more time foraging, and increase their use of risky habitats in warmer environments in laboratory experiments. In the field, prey and predator activity and/or abundance is positively related to temperature. These laboratory and field studies suggest that temperature increases should result in increased predation rtes of prey. Finally, the results of a dynamic state dependent optimization model also suggest that periods of warming will result in a lowering of the probability of survival of the fathead minnow, Pimephales promelas, a prey species, over the-ice free season. A reduction in DO levels in aquatic ecosystems results in a reduction in the number of and/or activity of predators present. This should result in a reduction in predation risk to prey. However, when endothermic predators are factored in to this equation, this reduction in risk may not occur. The presence of avian predators of small forage fish are directly related to the level of DO in the water, regardless of the abundance of prey fish present. This relationship is likely a result of behavioural decisions of prey that occurs in hypoxic conditions. In periods of low DO, prey fishes may exploit areas of higher DO that are closer to the surface of the waters. While their piscine predators may not be able to tolerate the low DO levels regardless of the position of prey in the water column, avian predators appear to be able to cue in to this increase in availability of potential prey, reducing any benefits that might occur by occupying surface areas where DO levels might be slightly higher than lower in the water column. As compared to temperature and DO, turbidity does not appear to affect the potential risk of predation to forage fish. The catch per unit effort (CPUE) of foragers who rely on vision and those that rely on chemical cues to forages, were not related to turbidity levels. Turbidity levels were also not related to the abundance of avian predators. This suggests that in this generally turbid, shallow water ecosystem, changes in turbidity do not affect the overall species composition of the system. Predator-prey interactions in the system are also not likely to be affected by turbidity. In contrast to this, temperature and DO are likely to influence the interactions between predators and their prey in a shallow water ecosystem. Both increases in temperature and decreases in DO may result in increases in predation pressure on prey. While temperature increases will likely result in increased predation on prey by piscine predators, a reduction in DO, which often occurs as temperature increases, will likely result in increased predation on prey by avian predators, even as predation pressure by piscine predators decrease.

Page generated in 0.0453 seconds