• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 100
  • 52
  • 27
  • 27
  • 27
  • 27
  • 24
  • 21
  • 20
  • 19
  • 18
  • 16
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ideais primos e ideais fechados em anéis de polinômios

Zoch, Lisiane January 2005 (has links)
Este trabalho tem por objetivo estudar os ideais primos do anel de polinômios R[X], com R um anel primo, não necessariamente comutativo. Para tanto, introduzimos o conceito de ideais principais fechados em R[X], que permite caracterizar os ideais primos como contração de ideais de Q[X] sendo definidos por polinômios mônicos irredutíveis de C[X], onde Q é o anel de quocientes µa direita de Martindale de R e C é o centro de Q, que é um corpo.
2

Ideais fechados e primos em anéis de polinômios e extensões livres centralizantes

Müller, Thaísa Jacintho January 2010 (has links)
Neste trabalho, estudamos ideais primos de anéis de polinômios e extensões livres centralizantes. Sejam R um anel primo, T o anel de quocientes de Martindale de R e C o centróide estendido de R. Mostramos que existe uma correspond^encia biunívoca entre o conjunto de todos os ideais primos R-disjuntos de R[x], o conjunto de todos os ideais primos T-disjuntos de T[x] e o conjunto de todos os polinômios mônicos de C[x]. Na sequência, apresentamos um resultado inédito: dado R um anel qualquer, encontramos um anel comutativo A tal que existe uma correspond^encia biunívoca entre os ideais primos de A[x] e os ideais primos de R[x]. Por _m, dada S = R[E] uma extensão livre centralizante do anel R com base E, mostramos que existe uma correspondência biunívoca entre o conjunto de todos os ideais primos P de R[E] com P \ R = 0, o conjunto de todos os ideais primos P_ de T[E] com P_ \ T = 0 e o conjunto de todos os ideais primos de C[E]. Trabalhamos, na verdade, com uma classe mais geral que os ideais primos, que são os ideais fechados, os quais são definidos ao longo do trabalho. / In this work, we study prime ideals in polynomial rings and free centred extensions. Let R be a prime ring, T the Martindale ring of quocients of R and C the extended centroid of R. We show that there exists a one-to-one correspondence between the set of all the R-disjoint prime ideals of R[x], the set of all the R-disjoint prime ideals of T[x] and the set of all the monic polynomials of C[x]. In sequence, we present an unpublished result: let R be a ring, we nd a commutative ring A such that there exists a one-to-one correspondence between the prime ideals of A[x] and the prime ideals of R[x]. We also consider a free centred extension S = R[E] of the ring R with basis E. We show that there exists a one-to-one correspondence between the set of all prime ideals P of R[E] where P \ R = 0, the set of all prime ideals P of T[E] where P \ T = 0 and the set of all the prime ideals of C[E]. We work, in fact, with a more general class of ideals called closed ideals, that we will de ne in the text.
3

Ideais fechados e primos em anéis de polinômios e extensões livres centralizantes

Müller, Thaísa Jacintho January 2010 (has links)
Neste trabalho, estudamos ideais primos de anéis de polinômios e extensões livres centralizantes. Sejam R um anel primo, T o anel de quocientes de Martindale de R e C o centróide estendido de R. Mostramos que existe uma correspond^encia biunívoca entre o conjunto de todos os ideais primos R-disjuntos de R[x], o conjunto de todos os ideais primos T-disjuntos de T[x] e o conjunto de todos os polinômios mônicos de C[x]. Na sequência, apresentamos um resultado inédito: dado R um anel qualquer, encontramos um anel comutativo A tal que existe uma correspond^encia biunívoca entre os ideais primos de A[x] e os ideais primos de R[x]. Por _m, dada S = R[E] uma extensão livre centralizante do anel R com base E, mostramos que existe uma correspondência biunívoca entre o conjunto de todos os ideais primos P de R[E] com P \ R = 0, o conjunto de todos os ideais primos P_ de T[E] com P_ \ T = 0 e o conjunto de todos os ideais primos de C[E]. Trabalhamos, na verdade, com uma classe mais geral que os ideais primos, que são os ideais fechados, os quais são definidos ao longo do trabalho. / In this work, we study prime ideals in polynomial rings and free centred extensions. Let R be a prime ring, T the Martindale ring of quocients of R and C the extended centroid of R. We show that there exists a one-to-one correspondence between the set of all the R-disjoint prime ideals of R[x], the set of all the R-disjoint prime ideals of T[x] and the set of all the monic polynomials of C[x]. In sequence, we present an unpublished result: let R be a ring, we nd a commutative ring A such that there exists a one-to-one correspondence between the prime ideals of A[x] and the prime ideals of R[x]. We also consider a free centred extension S = R[E] of the ring R with basis E. We show that there exists a one-to-one correspondence between the set of all prime ideals P of R[E] where P \ R = 0, the set of all prime ideals P of T[E] where P \ T = 0 and the set of all the prime ideals of C[E]. We work, in fact, with a more general class of ideals called closed ideals, that we will de ne in the text.
4

Ideais primos e ideais fechados em anéis de polinômios

Zoch, Lisiane January 2005 (has links)
Este trabalho tem por objetivo estudar os ideais primos do anel de polinômios R[X], com R um anel primo, não necessariamente comutativo. Para tanto, introduzimos o conceito de ideais principais fechados em R[X], que permite caracterizar os ideais primos como contração de ideais de Q[X] sendo definidos por polinômios mônicos irredutíveis de C[X], onde Q é o anel de quocientes µa direita de Martindale de R e C é o centro de Q, que é um corpo.
5

Ideais primos e ideais fechados em anéis de polinômios

Zoch, Lisiane January 2005 (has links)
Este trabalho tem por objetivo estudar os ideais primos do anel de polinômios R[X], com R um anel primo, não necessariamente comutativo. Para tanto, introduzimos o conceito de ideais principais fechados em R[X], que permite caracterizar os ideais primos como contração de ideais de Q[X] sendo definidos por polinômios mônicos irredutíveis de C[X], onde Q é o anel de quocientes µa direita de Martindale de R e C é o centro de Q, que é um corpo.
6

Ideais fechados e primos em anéis de polinômios e extensões livres centralizantes

Müller, Thaísa Jacintho January 2010 (has links)
Neste trabalho, estudamos ideais primos de anéis de polinômios e extensões livres centralizantes. Sejam R um anel primo, T o anel de quocientes de Martindale de R e C o centróide estendido de R. Mostramos que existe uma correspond^encia biunívoca entre o conjunto de todos os ideais primos R-disjuntos de R[x], o conjunto de todos os ideais primos T-disjuntos de T[x] e o conjunto de todos os polinômios mônicos de C[x]. Na sequência, apresentamos um resultado inédito: dado R um anel qualquer, encontramos um anel comutativo A tal que existe uma correspond^encia biunívoca entre os ideais primos de A[x] e os ideais primos de R[x]. Por _m, dada S = R[E] uma extensão livre centralizante do anel R com base E, mostramos que existe uma correspondência biunívoca entre o conjunto de todos os ideais primos P de R[E] com P \ R = 0, o conjunto de todos os ideais primos P_ de T[E] com P_ \ T = 0 e o conjunto de todos os ideais primos de C[E]. Trabalhamos, na verdade, com uma classe mais geral que os ideais primos, que são os ideais fechados, os quais são definidos ao longo do trabalho. / In this work, we study prime ideals in polynomial rings and free centred extensions. Let R be a prime ring, T the Martindale ring of quocients of R and C the extended centroid of R. We show that there exists a one-to-one correspondence between the set of all the R-disjoint prime ideals of R[x], the set of all the R-disjoint prime ideals of T[x] and the set of all the monic polynomials of C[x]. In sequence, we present an unpublished result: let R be a ring, we nd a commutative ring A such that there exists a one-to-one correspondence between the prime ideals of A[x] and the prime ideals of R[x]. We also consider a free centred extension S = R[E] of the ring R with basis E. We show that there exists a one-to-one correspondence between the set of all prime ideals P of R[E] where P \ R = 0, the set of all prime ideals P of T[E] where P \ T = 0 and the set of all the prime ideals of C[E]. We work, in fact, with a more general class of ideals called closed ideals, that we will de ne in the text.
7

Ideais fechados e primos em skew anéis de grupos parciais

Àvila Guzmán, Jesús Antonio January 2008 (has links)
Neste trabalho estudamos açães parciais de grupos abelianos sobre um anel R (denotadas por (R,α)), com ação global envolvente (T,β). Construímos o anel de α-quocientes de Martindale Q de R e estendemos a ação parcial (R,α) a Q. Entre outros resultados provamos que existe uma correspondência obijetiva entre todos os ideais R-disjuntos fechados de R*α G e todos os ideais T-disjuntos fechados de T* α G. Também provamos que existe uma correspondênciao bijetiva entre todos os ideais R-disjuntos fechados de R* α G e todos os ideais Q-disjuntos fechados de Q* α G. Provamos que estas correspondências preservam ideais primos. Finalmente, usamos estes resultados para estudar algumas classes de ideais primos de R*α G como ideais fortemente primos e primos não singulares. / In this thesis we study partial actions of abelian groups on a ring R (denoted by (R,α )), with enveloping action (T,β). We construct the Martindale -quotient ring Q and we extend the partial action (R,α) to Q. Among others results we prove that there exist a one-to-one correspondence between the R-disjoint closed and prime ideals of R* α G and the T-disjoint closed and prime ideals of T* α G. We also prove that there exist a one-to-one correspondence between the R-disjoint closed and prime ideals of R* α G and the Q-disjoint closed and prime ideals of Q* α G. Finally, we use this results to study the strongly prime ideals and the nonsingular prime ideals of R*α G.
8

Ideais fechados e primos em skew anéis de grupos parciais

Àvila Guzmán, Jesús Antonio January 2008 (has links)
Neste trabalho estudamos açães parciais de grupos abelianos sobre um anel R (denotadas por (R,α)), com ação global envolvente (T,β). Construímos o anel de α-quocientes de Martindale Q de R e estendemos a ação parcial (R,α) a Q. Entre outros resultados provamos que existe uma correspondência obijetiva entre todos os ideais R-disjuntos fechados de R*α G e todos os ideais T-disjuntos fechados de T* α G. Também provamos que existe uma correspondênciao bijetiva entre todos os ideais R-disjuntos fechados de R* α G e todos os ideais Q-disjuntos fechados de Q* α G. Provamos que estas correspondências preservam ideais primos. Finalmente, usamos estes resultados para estudar algumas classes de ideais primos de R*α G como ideais fortemente primos e primos não singulares. / In this thesis we study partial actions of abelian groups on a ring R (denoted by (R,α )), with enveloping action (T,β). We construct the Martindale -quotient ring Q and we extend the partial action (R,α) to Q. Among others results we prove that there exist a one-to-one correspondence between the R-disjoint closed and prime ideals of R* α G and the T-disjoint closed and prime ideals of T* α G. We also prove that there exist a one-to-one correspondence between the R-disjoint closed and prime ideals of R* α G and the Q-disjoint closed and prime ideals of Q* α G. Finally, we use this results to study the strongly prime ideals and the nonsingular prime ideals of R*α G.
9

Análise físico-estatística da estabilidade das distribuições de séries financeiras

Mazzeu, João Henrique Gonçalves 25 October 2012 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Sócio-Econômico, Programa de Pós-Graduação em Economia, Florianópolis, 2011 / Made available in DSpace on 2012-10-25T16:24:32Z (GMT). No. of bitstreams: 1 290829.pdf: 1303446 bytes, checksum: 343e00e71677e942128a0c50ce7672cf (MD5) / Este trabalho realiza uma análise estatística de três séries: a primeira é formada pelos retornos da ação PETR4; a segunda, pelos retornos do índice DJIA, compreendendo o período do "flash crash" do dia 6 de maio de 2010; e a terceira, utilizada como variável de controle, é formada pelas primeiras diferenças dos números primos. As duas séries financeiras são coletadas na frequência de 1 minuto. A hipótese de que uma distribuição de Levy-estável não-Gaussiana é adequada para modelar os dados é avaliada e é dada uma atenção particular ao comportamento das caudas das distribuições. Quanto às duas séries financeiras, conclui-se que há um escalonamento não-Gaussiano e que o flash crash não pode ser considerado uma anomalia. Dos estudos das caudas, observa-se que ambas as séries financeiras seguem um padrão de lei de potência fora do regime de Levy, o qual também não é a lei cúbica inversa. Finalmente, mostra-se que a variância dependente do tempo de ambas as séries financeiras, não descrita pela distribuição de Levy-estável, pode ser modelada de uma maneira simples por um processo GARCH(1,1). Por fim, a série dos números primos, utilizada como uma variável de controle não-financeira, não apresentou evidências de escalonamento e de um padrão de lei de potência. / This work carries out a statistic analysis of three series: the first one is formed by the returns of the PETR4 stocks; the second one by the returns of the DJIA index, comprising the period of the flash crash of May 6, 2010; and the third series, used as a control variable, is formed by the first differences of prime numbers. The two financial series are sampled at a one-minute frequency. The hypothesis of a non-Gaussian Levy-stable distribution to model the data is evaluated and we give particular attention to the distribution tail-bahavior. For the two financial series, we conclude that there is non-Gaussian scaling and that the flash crash cannot be considered an anomaly. From the study of tails, we find that both financial series follow a power-law pattern outside the Levy regime, which is not the inverse cubic law. Besides, we show that the time-dependent variance of both financial series, not tracked by the Levy-stable distribution, can be modeled in a straightforward manner by a GARCH(1,1) process. Finally, the series of prime numbers, used as a non-financial control variable, did not show evidences of scaling and power-law pattern.
10

Ideais primos e fechados em extensões de anéis

Sant'Ana, Alvino Alves January 1992 (has links)
Nesta dissertação, estudamos ideais primos e ideias fechados em S = R[E], onde S é uma extensão livre centralizante do anel primo R. / In this thesis, we study prime ideals and closed ideal in S = R[E], where S is a centralizing free extension of the prime ring R.

Page generated in 0.0366 seconds