Spelling suggestions: "subject:"problemas dde riemann"" "subject:"problemas dde niemann""
1 |
Problemas de Riemann para um Sistema Simétrico de Duas Leis de Conservação / Riemann Problems for a Symmetrical System of Two Conservation LawsLIMA, Lidiane dos Santos Monteiro 09 April 2010 (has links)
Made available in DSpace on 2014-07-29T16:02:23Z (GMT). No. of bitstreams: 1
versaofinal_lidiane.pdf: 708631 bytes, checksum: c97f21b6c4fd093f9c0ec8f92aa22110 (MD5)
Previous issue date: 2010-04-09 / In this dissertation we describe the solutions to the Riemann problem for a system of two conservation laws written in the normal from according to classification of Schaeffer-Shearer in [9]. Through changes of variables Schaeffer-Shearer determined the normal form for a nonlinear system of two conservation laws with an isolated umbilical point in
state space. The normal form consists of a system of two equations, with homogeneous and quadratic functions of flow that depend only on two parameters. Also in [9] were
established four distinct regions in terms of parameters, denoted by I, II, III and IV, in which varying pair of parameters in each region, the curves of waves that make up the solution of the Riemann problem have the same configuration. In this dissertation we consider the case in which the pair of parameters belongs to region IV, and in the particular case in which one of the parameters is null. In this case, the classic Lax criterion for admissibility of shocks (discontinuity solutions) generally is sufficient to obtain uniqueness of solution. Although, for some initial states, it is necessary to admit in solution also the called compressive shocks, which do not satisfy the Lax criterion. / Nesta dissertação determinamos as soluções do problema de Riemann para um sistema de duas leis de conservação escrito na forma normal segundo a classificação de Schaeffer-Shearer, em [9]. Através de mudanças de variáveis, Schaeffer-Shearer determinaram a forma normal para um sistema não linear de duas leis de conservação com um ponto umbílico isolado no espaço de estados. A forma normal consiste de um sistema de duas equações, com funções de fluxo quadráticas homogêneas que dependem apenas de dois parâmetros. Também em [9] foram determinadas quatro regiões distintas no plano dos parâmetros, denotadas por I, II, III e IV, onde, variando o par de parâmetros em cada região, as curvas de onda que compõem a solução do problema de Riemann tem a mesma configuração. Nesta dissertação consideramos o caso em que o par de parâmetros pertence a região IV, e ainda no caso particular em que um dos parâmetros é nulo. Neste caso, o clássico critério de Lax para admissibilidade dos choques (soluções descontínuas),
em geral, é suficiente para se obter unicidade de solução. Embora, para alguns estados iniciais, é necessário admitir na solução também os chamados choques compressivos, que
não satisfazem o critério de Lax.
|
2 |
[pt] PROBLEMAS DE RIEMANN HILBERT NA TEORIA DE MATRIZES ALEATÓRIAS / [en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORYPERCY ALEXANDER CACERES TINTAYA 19 May 2016 (has links)
[pt] Estudamos as noções básicas da Teoria das Matrizes Aleatórias e
em particular discutimos o Emsemble Unitário Gaussiano. A continuação
descrevemos o gaz de Dyson em equilíbrio e fora do equilíbrio que permite
interpretar a informação estatística dos autovalores das matrizes aleatórias.
Além desso mostramos descrições alternativas dessa informação estatística.
Em seguida discutimos aspectos diferentes dos polinômios ortogonais. Uma
dessas caracterizações é dada pelos problemas de Riemann-Hilbert. As
técnicas dos problemas de Riemann-Hilbert são uma ferramenta eficaz e
potente na Teoria das Matrizes Aleatórias a qual discutimos com mais
cuidado. Finalmente usamos o método de máxima gradiente na análise
assintótico dos polinômios ortogonais. / [en] We review the basic notions of the Random Matrix Theory and in
particular the Gaussian Unitary Ensemble. In what follows we describe the
Dyson gas in equilibrium and nonequilibrium that allows one to interpret the
statistical information of the eigenvalues of random matrices. Furthermore
we show alternative descriptions of this statistical information. In the
following we discuss different aspects of orthogonal polynomials. One of
these caracterizations is given by a Riemann Hilbert problem. Riemann
Hilbert problem techniques are an efficient and powerfull tool for Random
Matrix Theory which we discuss in more detail. In the final part we
use the steepest descent method in the asymptotic analysis of orthogonal
polynomials.
|
Page generated in 0.0817 seconds